Radio telescope

related topics
{math, energy, light}
{system, computer, user}
{area, community, home}
{island, water, area}
{food, make, wine}
{build, building, house}
{style, bgcolor, rowspan}
{car, race, vehicle}

A radio telescope is a form of directional radio antenna used in radio astronomy. The same types of antennas are also used in tracking and collecting data from satellites and space probes. In their astronomical role they differ from optical telescopes in that they operate in the radio frequency portion of the electromagnetic spectrum where they can detect and collect data on radio sources. Radio telescopes are typically large parabolic ("dish") antennas used singly or in an array. Radio observatories are preferentially located far from major centers of population to avoid electromagnetic interference (EMI) from radio, TV, radar, and other EMI emitting devices. This is similar to the locating of optical telescopes to avoid light pollution, with the difference being that radio observatories are often placed in valleys to further shield them from EMI as opposed to clear air mountain tops for optical observatories.

Contents

Early radio telescopes

The first radio antenna used to identify an astronomical radio source was one built by Karl Guthe Jansky, an engineer with Bell Telephone Laboratories, in 1931. Jansky was assigned the job of identifying sources of static that might interfere with radio telephone service. Jansky's antenna was an array of dipoles and reflectors designed to receive short wave radio signals at a frequency of 20.5 MHz (wavelength about 14.6 metres). It was mounted on a turntable that allowed it to rotate in any direction, earning it the name "Jansky's merry-go-round". It had a diameter of approximately 100 ft (30 m). and stood 20 ft (6 m). tall. By rotating the antenna on a set of four Ford Model-T tires, the direction of the received interfering radio source (static) could be pinpointed. A small shed to the side of the antenna housed an analog pen-and-paper recording system. After recording signals from all directions for several months, Jansky eventually categorized them into three types of static: nearby thunderstorms, distant thunderstorms, and a faint steady hiss of unknown origin. Jansky finally determined that the "faint hiss" repeated on a cycle of 23 hours and 56 minutes. This period is the length of an astronomical sidereal day, the time it takes any "fixed" object located on the celestial sphere to come back to the same location in the sky. Thus Jansky suspected that the hiss originated well beyond the Earth's atmosphere, and by comparing his observations with optical astronomical maps, Jansky concluded that the radiation was coming from the Milky Way Galaxy and was strongest in the direction of the center of the galaxy, in the constellation of Sagittarius.

Full article ▸

related documents
Plasma stability
Ray tracing (graphics)
Attenuation
Geomagnetic storm
Optical isolator
Rayleigh scattering
Optics
Huygens–Fresnel principle
Gravitational constant
Resonance
2 Pallas
Proton decay
Olbers' paradox
Weak interaction
Star formation
Elementary particle
Near-Earth asteroid
Gravitational singularity
Weight
Ganymede (moon)
Thermistor
Capacitance
Terrestrial planet
Optical aberration
Very Large Telescope
Heinrich Hertz
Heat conduction
Cyclotron
Charon (moon)
Solar neutrino problem