# Removable singularity

 related topics {math, number, function} {math, energy, light}

In complex analysis, a removable singularity (sometimes called a cosmetic singularity) of a holomorphic function is a point at which the function is undefined, but it is possible to define the function at that point in such a way that the function is regular in a neighbourhood of that point.

For instance, the function

has a singularity at z = 0. This singularity can be removed by defining f(0) := 1, which is the limit of f as z tends to 0. The resulting function is holomorphic. In this case the problem was caused by f being given an indeterminate form. Taking a power series expansion for $\frac{\sin(z)}{z}$ shows that

Formally, if U is an open subset of the complex plane C, a is a point of U, and f: U − {a} → C is a holomorphic function, then a is called a removable singularity for f if there exists a holomorphic function g: UC which coincides with f on U − {a}. We say f is holomorphically extendable over U if such a g exists.

## Contents

### Riemann's theorem

Riemann's theorem on removable singularities states when a singularity is removable:

Theorem. Let D be an open subset of the complex plane, a a point of D and f a holomorphic function defined on the set D \ {a}. The following are equivalent:

The implications 1 ⇒ 2 ⇒ 3 ⇒ 4 are trivial. To prove 4 ⇒ 1, we first recall that the holomorphy of a function at a is equivalent to it being analytic at a (proof), i.e. having a power series representation. Define

Clearly, h is holomorphic on D \ {a}, and there exists

by 4, hence h is holomorphic on D and has a Taylor series about a:

We have a0 = h(a) = 0 and a1 = h'(a) = 0, therefore

is a holomorphic extension of f over a, which proves the claim.

### Other kinds of singularities

Unlike functions of a real variable, holomorphic functions are sufficiently rigid that their isolated singularities can be completely classified. A holomorphic function's singularity is either not really a singularity at all, i.e. a removable singularity, or one of the following two types: