Ring (mathematics)

related topics
{math, number, function}
{style, bgcolor, rowspan}

In mathematics, a ring is an algebraic structure consisting of a set together with two binary operations usually called addition and multiplication, where the set is an abelian group under addition (called the additive group of the ring) and a monoid under multiplication such that multiplication distributes over addition.a[›] In other words the ring axioms require that addition is commutative, addition and multiplication are associative, multiplication distributes over addition, each element in the set has an additive inverse, and there exists an additive identity. One of the most common examples of a ring is the set of integers endowed with its natural operations of addition and multiplication. Certain variations of the definition of a ring are sometimes employed, and these are outlined later in the article.

The branch of mathematics that studies rings is known as ring theory. Ring theorists study properties common to both familiar mathematical structures such as integers and polynomials, and to the many less well-known mathematical structures that also satisfy the axioms of ring theory. The ubiquity of rings makes them a central organizing principle of contemporary mathematics.[1]

Ring theory may be used to understand fundamental physical laws, such as those underlying special relativity and symmetry phenomena in molecular chemistry.

The concept of a ring first arose from attempts to prove Fermat's last theorem, starting with Richard Dedekind in the 1880s. After contributions from other fields, mainly number theory, the ring notion was generalized and firmly established during the 1920s by Emmy Noether and Wolfgang Krull.[2] Modern ring theory—a very active mathematical discipline—studies rings in their own right. To explore rings, mathematicians have devised various notions to break rings into smaller, better-understandable pieces, such as ideals, quotient rings and simple rings. In addition to these abstract properties, ring theorists also make various distinctions between the theory of commutative rings and noncommutative rings—the former belonging to algebraic number theory and algebraic geometry. A particularly rich theory has been developed for a certain special class of commutative rings, known as fields, which lies within the realm of field theory. Likewise, the corresponding theory for noncommutative rings, that of noncommutative division rings, constitutes an active research interest for noncommutative ring theorists. Since the discovery of a mysterious connection between noncommutative ring theory and geometry during the 1980s by Alain Connes, noncommutative geometry has become a particularly active discipline in ring theory.

Full article ▸

related documents
Presburger arithmetic
Assignment problem
Chain rule
Richard's paradox
Extended real number line
Splitting lemma
Haar measure
Boolean ring
Unicity distance
Meromorphic function
ML (programming language)
Axiom of pairing
Definable real number
Queue (data structure)
Legendre symbol
Oracle machine
Monster group
Generalized mean
Functional analysis
Mathematical model
Base (topology)
Elementary group theory
XSL Transformations
Examples of groups