Simple module

related topics
{math, number, function}
{math, energy, light}
{build, building, house}

In mathematics, specifically in ring theory, the simple modules over a ring R are the (left or right) modules over R which have no non-zero proper submodules. Equivalently, a module M is simple if and only if every cyclic submodule generated by a non-zero element of M equals M. Simple modules form building blocks for the modules of finite length, and they are analogous to the simple groups in group theory.

In this article, all modules will be assumed to be right unital modules over a ring R.

Contents

Examples

Z-modules are the same as abelian groups, so a simple Z-module is an abelian group which has no non-zero proper subgroups. These are the cyclic groups of prime order.

If I is a right ideal of R, then I is simple as a right module if and only if I is a minimal non-zero right ideal: If M is a non-zero proper submodule of I, then it is also a right ideal, so I is not minimal. Conversely, if I is not minimal, then there is a non-zero right ideal J properly contained in I. J is a right submodule of I, so I is not simple.

If I is a right ideal of R, then R/I is simple if and only I is a maximal right ideal: If M is a non-zero proper submodule of R/I, then the preimage of M under the quotient map RR/I is a right ideal which is not equal to R and which properly contains I. Therefore I is not maximal. Conversely, if I is not maximal, then there is a right ideal J properly containing I. The quotient map R/IR/J has a non-zero kernel which is not equal to R/I, and therefore R/I is not simple.

Every simple R-module is isomorphic to a quotient R/m where m is a maximal right ideal of R.[1] By the above paragraph, any quotient R/m is a simple module. Conversely, suppose that M is a simple R-module. Then, for any non-zero element x of M, the cyclic submodule xR must equal M. Fix such an x. The statement that xR = M is equivalent to the surjectivity of the homomorphism RM that sends r to xr. The kernel of this homomorphism is a right ideal I of R, and a standard theorem states that M is isomorphic to R/I. By the above paragraph, we find that I is a maximal right ideal. Therefore M is isomorphic to a quotient of R by a maximal right ideal.

If k is a field and G is a group, then a group representation of G is a left module over the group ring kG. The simple kG modules are also known as irreducible representations. A major aim of representation theory is to understand the irreducible representations of groups.

Full article ▸

related documents
Euler-Jacobi pseudoprime
Elementary event
Landau's function
Star height problem
Location parameter
Fibonacci
Pedal triangle
Canonical Encoding Rules
Centralizer and normalizer
Persistence
Unknot
RIPEMD
Central moment
Conjugate closure
List of basic mathematics topics
Precondition
Hurwitz polynomial
De Bruijn-Newman constant
Liouville function
Euler's sum of powers conjecture
The Third Manifesto
Face (geometry)
Sequential access
Online algorithm
Sample space
Surjective function
Tomaž Pisanski
XPointer
Product of group subsets
Randomization