Topological spaces are mathematical structures that allow the formal definition of concepts such as convergence, connectedness, and continuity. They appear in virtually every branch of modern mathematics and are a central unifying notion. The branch of mathematics that studies topological spaces in their own right is called topology.
Contents
Definition
A topological space is a set X together with τ, a collection of subsets of X, satisfying the following axioms:
The collection τ is called a topology on X. The elements of X are usually called points, though they can be any mathematical objects. A topological space in which the points are functions is called a function space. The sets in τ are called the open sets, and their complements in X are called closed sets. A subset of X may be neither closed nor open, either closed or open, or both. A set that is both closed and open is called a clopen set.
Examples
Equivalent definitions
There are many other equivalent ways to define a topological space. (In other words, each of the following defines a category equivalent to the category of topological spaces above.) For example, using de Morgan's laws, the axioms defining open sets above become axioms defining closed sets:
Full article ▸
