Weatherization

related topics
{acid, form, water}
{rate, high, increase}
{build, building, house}
{system, computer, user}
{company, market, business}
{island, water, area}
{law, state, case}
{household, population, female}
{land, century, early}

Weatherization (American English) or weatherproofing (British English) is the practice of protecting a building and its interior from the elements, particularly from sunlight, precipitation, and wind, and of modifying a building to reduce energy consumption and optimize energy efficiency.

Weatherization is distinct from building insulation, although building insulation requires weatherization for proper functioning. Many types of insulation can be thought of as weatherization, because they block drafts or protect from cold winds. Whereas insulation primarily reduces conductive heat flow, weatherization primarily reduces convective heat flow.

In the United States, buildings use one third of all energy consumed and two thirds of all electricity. Due to the high energy usage, they are a major source of the pollution that causes urban air quality problems and pollutants that contribute to climate change. Building energy usage accounts for 49 percent of sulfur dioxide emissions, 25 percent of nitrous oxide emissions, and 10 percent of particulate emissions.[1]

Contents

Weatherization procedures

Typical weatherization procedures include:

  • Sealing bypasses (cracks, gaps, holes), especially around doors, windows, pipes and wiring that penetrate the ceiling and floor, and other areas with high potential for heat loss, using caulk, foam sealant, weather-stripping, window film, door sweeps, electrical receptacle gaskets, and so on to reduce infiltration.
  • Sealing recessed lighting fixtures('can lights' or 'high-hats'), which leak large amounts of air into unconditioned attic space.
  • Sealing air ducts, which can account for 20% of heat loss, using fiber-reinforced mastic(not duck/duct tape, which is not suitable for this purpose)
  • Installing/replacing dampers in exhaust ducts, to prevent outside air from entering the house when the exhaust fan or clothes dryer is not in use.
  • Protecting pipes from corrosion and freezing.
  • Installing footing drains, foundation waterproofing membranes, interior perimeter drains, sump pump, gutters, downspout extensions, downward-sloping grading, French drains, swales, and other techniques to protect a building from both surface water and ground water.
  • Providing proper ventilation to unconditioned spaces to protect a building from the effects of condensation. See Ventilation issues in houses
  • Installing roofing, building wrap, siding, flashing, skylights or solar tubes and making sure they are in good condition on an existing building.
  • Installing insulation in walls, floors, and ceilings, around ducts and pipes, around water heaters, and near the foundation and sill.
  • Installing storm doors and storm windows.
  • Replacing old drafty doors with tightly sealing, foam-core doors.
  • Replacing older windows with low-energy, double-glazed windows.

Full article ▸

related documents
Vitamin E
Ornithine
Hypoxanthine
Katharometer
Genetic material
Ketene
List of synthetic polymers
Anatase
Carbon group
Johannes Nicolaus Brønsted
Noncoding DNA
Boron group
Putrescine
Calamine (mineral)
Surfactant
Thermal diffusivity
Potassium ferrocyanide
Ununennium
Octahedrite
Perlite
Uraninite
Ligase
Chymosin
Acyl
Isoleucine
Phenyl group
Allene
Periodic table (standard)
Physical chemistry
Cobalt bomb