An Architectonic Perspective on Autism

Clarence E. Schutt
Princeton University

St. Peter’s College
March 5, 2007
Outline of Talk

I What is architectonics?

II The Structural Biology of Autism

III Cancer Biology & Autism

IV Can the Effects of Autism be Reversed?
What is Architectonics?
"By the term Architectonic I mean the art of constructing a system."

Immanuel Kant
Decade of the Brain (1990-2000)

Human Genome Project (1988-2007)

NICHD Workshop (1993)

NAAR (ATP), CAN (AGRE) (1994)
Molecular Basis of Learning & Memory

Synaptic plasticity: frequently-used connections (‘synapses’) between nerve cells are physically changed. This requires gene transcription and protein synthesis.

Mutated genes in (syndromic) autism code for proteins that play crucial roles in synaptic plasticity.
The Biology of Synaptic Strength (LTP)
Learning & Memory: Long Term Potentiation (LTP)

New results show that LTP produces an increase in actin-rich spines. Furthermore, these spines have large synapses, strongly suggesting that LTP involves synaptic growth. The process appears to require LIMK-1 phosphorylation of the actin depolymerizing factor coflin.

Actin Depolymerization Inhibits Spine Motility

QuickTime™ and a decompressor are needed to see this picture.

Andrew Matus
The Structural Biology of Autism
Synaptic Plasticity & Autism

I. Fragile-X (FMR1, mGluR)

II. Tuberous Sclerosis (TSC1/TSC2)

III. Rett Syndrome (MecP2)

IV. Prader-Willi, Angelman (UBE3a, GABAR3)

V. Rare Genetic Forms (neuroligin 3/4, neurexin-β, SHANK3 -- copy number variations -CNV)
"Quantitative analysis of mRNA levels in FMRP-specific immunoprecipitates from synaptoneurosomes demonstrated the association of FMRP with CAMKIIa, PSD-95, and GluR1/2 ... causing the impairments of synaptic plasticity observed in Fmr1 knockout mice...".

Synaptic Plasticity & Autism

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

Bagni & Greenough, 2006
A model depicting the role of neuroligins for clustering β-neurexin and inducing presynaptic differentiation

"The mutations identified in these affected individuals are thought to affect the function and localization of SHANK3 at PSD's and dendritic spines".

"Therefore, we hypothesize that the protein complex including neuroligins and SHANK participate in the assembly of specialized post-synaptic structures required for the development of language and social communication".

“Seeing” Molecules with X-rays

Fourier synthesis & Model building

X-ray beam → Diffracted X-rays → Crystal → von Laue spots → Film

Fourier synthesis & Model building

Diagram of molecule structure with X-ray diffraction pattern.
Synaptic Plasticity & Autism

Baron et al, 2006
Mutations of Shank-SAM that disrupt assembly are located in the inter- and intrapolymer interfaces of the sheet.
Assembly mutants prevent the localization of Shank to the synapse

Cancer Biology & Autism
Cancer Biology & Autism

Wullschleger, Loewith & Hall (2006)
Cancer Biology & Autism

Wullschleger, Loewith & Hall, Cell 2006
Cancer Biology & Autism

Pten +/-

Pten: phospholipid phosphatase

Kwon et al. (2006)
Tumor Suppressors & Autism

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

TSC 1/ TSC 2 stress sensors

Tavazoie et al, 2007
PAK Inhibition Reverses Fragile-X Phenotype

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

Spine density

Long Term Potentiation (LTP)

Hayashi et al. (2007)
Can the Effects of *Autism* be Reversed?
Schematic representation of pyramidal neurons from control, autism, and Rett brains

Spatial and temporal distribution of MeCP2 during human development

A deficit in long-term potentiation (LTP) accompanies onset of symptoms in mature adult Mecp2lox-Stop/+ heterozygous females and is reversed by Mecp2 reactivation.

Neurological Deficits of Autism are Reversible

"In conclusion, our study shows that RTT-like neurological defects due to absence of the mouse *Mecp2* gene can be rectified by delayed restoration of that gene. The experiments do not suggest an immediate therapeutic approach to RTT, but they establish the principle of reversibility in a mouse model and therefore raise the possibility that neurological deficits seen in this and related disorders are not irrevocable". (italics mine)

Guy, J. et al. published on-line 8 February 2007 (www.Scienceexpress.org)
Debunking the Myth of Mental Retardation
“...y aún no puede resolverse.”

“So many feet, poor thing, and still it can't make up its mind. And, seeing it stunned at such a critical moment, today what worry that traveler brought me.”

César Vallejo (“La araña”, verse 4)
Michael Wigler's Unified Genetic Model

"We therefore propose the following unified model for sporadic and inherited autism. The majority of autisms are a result of de novo mutations, occurring first in the parental germ line. For reasons yet to be determined, female offspring are considerably more resistant to displaying the effects of such mutations than are males. Resistant individuals, but females in particular, carrying the mutation may marry, and with a probability of 50% pass the mutation to their offspring, who will display the symptoms with high priority if male".

PNAS 104, 12831-12836 (2007)
New Directions in Autism Research


2. Gut Microflora (clostridial overabundance).

3. MEG Imaging (sensory, linguistic, motor planning - 'neuroendophenotype').

4. Oxidative Stress (biomarkers)

5. Rhythmicity, synchrony, timing, E/I
Fragile-X & Loss of Synaptic Plasticity

"Fragile-X syndrome, a common form of inherited mental retardation, is caused by the loss of fragile-X mental retardation protein (FMRP), an mRNA binding protein that is hypothesized to regulate local mRNA translation in dendrites downstream of gp-1 metabotropic receptors (mGluRs)."

"Quantitative analysis of mRNA levels in FMRP-specific immunoprecipitates from synaptoneurosomes demonstrated the association of FMRP with CAMKIIα, PSD-95, and GluR1/2 É causing the impairments of synaptic plasticity observed in Fmr1 knockout miceÉ ".