
Intricacy handout

Adam Elga

February 18, 2003

1 Algorithmic Complexity

A.K.A. Kolmogorov-Chaitin-Solomonov complexity. Motivating idea: simple ob-
jects admit of short descriptions. Example: scribbles on the board, vs picture of
a house. Example: patterned sequence of digits vs. unpatterned sequence.

The complexity of string s relative to machine T is defined to be the length of
the shortest program (i.e., input) that gets T to produce s as output, or ∞ if no
program gets T to produce s as output.

Choose some universal Turing machine U as our reference machine, and define
the complexity of string s to be the complexity of s relative to U .

How much does the choice of reference machine matter?
Lots, locally. For any string s, there is a universal machine Us such that the

complexity of s relative to Us is zero.
Not much, in the limit. Suppose that U and U ′ are both universal machines.

Then there is a constant k such that for any s, the complexity of s relative to U

never differs from the complexity of s relative to U ′ by more than k. (Why?)
So: fixing U and U ′, in the limit as the strings get larger, the particular choice

of UTM matters less and less.

2 Berry paradox

(This presentation follows that of G. Chaitin.)

D: The smallest number not describable in fewer than twenty syllables.

Notice that there are only finitely many under-twenty-syllable descriptions.
Therefore, not every natural number is describable in under twenty syllables.
Therefore, there must be a least number not describable in under twenty syllables.
Therefore, D describes some number. Which one?

Suppose for contradiction that D describes n. Then n is describable in nineteen
syllables, so D doesn’t describe n. Contradiction. What has gone wrong?

1



3 Uncomputability of intricacy

The intricacy i(n) of n is the size (# of states in) the smallest machine that
outputs n when started on a blank tape.

Let L(n) be the least number that requires a machine with more than n states
to produce.

Suppose for contradiction that some Turing machine computes i.
How could you rejig such a machine to get a machine that computes L?
Call the resulting machine TL, and suppose that it has k states.
Consider L(1000000k) = V . V is the least number that requires a machine

with more than 1000000k states to produce.
But now consider the description “the least number that requires a machine

with more than 1000000k states to produce.” That looks like a compact recipe for
producing V . How can you design a machine (with fewer than 1000000k states)
that produces V according to that recipe?

4 Uncomputability and incompleteness

Can a given domain of discourse be mechanized?
Say that a domain of discourse can be Turing-mechanized iff there is some TM

that prints out all and only the truths in that domain of discourse.
Equivalently, a domain can be Turing-mechanized iff there is a TM that prints

out a set of axioms for the domain of discourse, and a Turing-computable rule for
deriving theorems from the axioms.

Example: consider any domain of discourse that addresses all claims of the
form:

The intricacy of n is k.

That domain of discourse cannot be Turing-mechanized. (Why?) The same
goes for domains that address all claims of the form “Turing machine m halts on
input n.”

Important application: Arithmetic. In the language of arithmetic, one can
make numerical assertions such as:

• It is not the case that for all x, for all y, x + y = y + y.

• There exists an x such that for all y, x× y = y × y.

Claims such as “244 is prime”, “there is a consecutive pair of primes that differ
by 17”, etc. can all be expressed in the language of arithmetic. Less obviously, so
can claims about Turing machines.

Punchline (a claim close to Godel’s first incompleteness theorem): arithmetic—
or any consistent domain of discourse that includes it—cannot be Turing-mechanized.

2


