

Tilting At Windmills?

Research, Collaboration, Advocacy and Agenda Setting on Fissile Materials

Zia Mian and Alexander Glaser

UCS Summer Symposium on Science and World Affairs, Princeton, NJ, August 1, 2014

About the IPFM

MISSION

Providing the technical basis for policy initiatives to reduce global stocks of military and civilian fissile materials

- Established in 2006, IPFM has 31 members from 18 states
- Publications: annual Global Fissile Material Reports, research reports, and country studies
- www.fissilematerials.org and www.fissilematerials.org/blog

IPFM Members

- Anatoli Diakov (Russia)
- Pervez Hoodbhoy (Pakistan)
- Li Bin (China)
- Rebecca Johnson (United Kingdom)
- Gordon MacKerron (United Kingdom)
- Yves Marignac (France)
- Abdul H. Nayyar (Pakistan)
- Pavel Podvig (Russia)
- R. Rajaraman (Co-Chair, India)
- M. V. Ramana (India)
- Mycle Schneider (France)
- Harold Feiveson
- Alexander Glaser
- Zia Mian
- Frank von Hippel (Co-Chair)

- José Goldemberg (Brazil)
- Martin B. Kalinowski (Germany)
- Jungmin Kang (South Korea)
- Patricia Lewis (Ireland)
- Miguel Marín-Bosch (Mexico)
- Arend Meerburg (Netherlands)
- Paul Meyer (Canada)
- S. Hossein Mousavian (Iran)
- Jean du Preez (South Africa)
- Ole Reistad (Norway)
- Henrik Salander (Sweden)
- Annette Schaper (Germany)
- Tatsujiro Suzuki (Japan)
- Johan Swahn (Sweden)
- Masa Takubo (Japan)
- Fumihiko Yoshida (Japan)

Global Fissile Material Reports

2008: Scope and Verification of a Fissile Material (Cutoff) Treaty with country perspectives and draft FM(C)T

2009: A Path to Nuclear Disarmament with country perspectives

2010: Balancing the Books: [Weapon State] Production and Stocks

2011: Nuclear Weapon and Fissile Material Stockpiles and Production

2013: Increasing Transparency of Nuclear Warhead and Fissile Material Stocks as a Step toward Disarmament

NEXT: Unmaking the Bomb: A Fissile Material Approach
A Fissile Material to Nuclear Disarmament and Nonproliferation, MIT Press, 2014

UNMAKING THE BOMB

A FISSILE MATERIAL APPROACH TO NUCLEAR DISARMAMENT AND NONPROLIFERATION

MIT Press www.unmakingthebomb.com September 26, 2014

Fissile Materials and Nuclear Weapons

HEU in weapons usually more than 90% enriched in U-235 (0.7% in nature)

The Hiroshima bomb used 60 kg of 80%-enriched HEU

Plutonium (mostly Pu-239) separated from irradiated uranium
The Nagasaki bomb used 6 kg of Plutonium

Verifiably and irreversibly reducing and eliminating nuclear weapons will require openness about national stockpiles of nuclear weapons <u>and</u> fissile materials

A modern thermonuclear warhead contains on average 3-4 kg of plutonium and 25 kg highly enriched uranium

Adapted from Final Report of the Select Committee on U.S. National Security and Military/Commercial Concerns with the Peoples Republic of China ("Cox Report"), U.S. House of Representatives, 3 January 1999

Highly Enriched Uranium, mid 2013

Global stockpile is about 1350 tons, almost 99% is in weapon states

(25 MT of HEU are equivalent to 1,000-2,000 nuclear weapons)

Separated Plutonium, mid 2013

Global stockpile is about 500 tons, more than half is civilian and this stock is growing

(5 MT of plutonium are equivalent to 1,000-1,500 nuclear weapons)

How IPFM Estimates Are Made

The Case of Israel's Plutonium Stockpile

COMF - DEF

Summary of Reactor Design

Power

26 th Thereval

Moderator

D₂C

Coolant

D20

Coolant flow

1800 cubic meters por hour

Inlet temperature

10.8°c

Outlet temperature

51.7°C

Velocity

About 4.2 meters/second

Incomel tubes and liming in primary heat exchanger. Standard equipment in

secondary heat exchanger system.

Mumber of coolant loops

Design especity

13 NW each loop - (on spare)

Primary coolant inlet and outlet at bottom of reactor.

Physical dimensions

Lattice specing

13.5 cm howagemal

Calandria diemeter

2.57 meters

Oraphite reflector

80 on thick

Iron thermal shield

20 cm thick

Concrete shield

3.80 moters thick

Containment vessel - diameter 36 meters

MOTES OM VISIT TO ISRANL

U. M. Steebler - J. W. Croech, Jr.

arrived at Tel Aviv at about 8:15 p.n. on Mednesday,

1961. We were contacted immodiately on deplaning and takon

ivete room where we get Mr. Katchalski, Head of the Department graics of the Weigmann Institute of Science and Mr. M. Gilboo

ublic Relations Department of the Minstry of Defence.

halski said that the Prime Minister had osked him to great

is one of the scientific advisors to the Prime Minister. Mr. Oilbox r guide and accompanied as everywhere we went. We stayed at the

otel - a resort remote from Tel Aviv. The rooms were in

d on the second day if we were to neet Profressor Perguen

ised that he is a public political figure and that such a refore secmed undesirable but might be arranged if we really

The fact that the Atomic Energy Commission is only an

p was also emphasized on a number of occasions in response

quie was suggested which we agreed should be setisfactory. of the following;

F, May 18, 1961 (R.M.) Wisit to Swimming Pool Reactor at Wahal Shorek

(P.M.) Visit to Weizmann Institute of Science at Rehovoth.

Mr. Katchmloki entertained in the

CONFIDENTIAL - DEFENSE INFORMATION

U. M. Staebler and J. W. Crouch, Jr., Notes on Visit to Israel, Draft, 23 May 1961 Available at www.gwu.edu/~nsarchiv/israel/documents/first, mirrored at www.ipfmlibrary.org/sta61.pdf

1985 Vanunu Pictures and Testimony

NPT PrepCom, New York, May 2014

Technical Specifications of "EL-3"

Some data can be used to complement data otherwise unavailable for Dimona

J. Robert, J. Hainzelin, and V. Raievski, "The EL-3 Reactor," A/CONF. 15/P/335, Proceedings of the Second United Nations International Conference on the Peaceful Uses of Atomic Energy, Geneva, 1958, www.ipfmlibrary.org/rob58.pdf

NPT PrepCom, New York, May 2014

Possible Operational Histories of Dimona

(1965-2015, Production Scenarios A-E)

*Possible circumstances or explanations

Beginning of full-scale plutonium production at Dimona is uncertain; reactor went critical in 1962 and began operating in late 1963

50 Years of Plutonium Production at Dimona

Estimated plutonium inventory by 2015: 850 kg ± 130 kg

(allowing for possible removals of about 20 kg in nuclear tests)

Current production rate: 10-18 kg/year, depending on Dimona's power level: 40-70 MW

Israel's nuclear arsenal is believed to include 100-150 warheads

If these estimates are correct, Israel has more than enough plutonium to meet its current security needs and *could* cease fissile material production

Plutonium production possibly a "byproduct" today

Main mission of Dimona now most likely tritium production (Tritium could be produced with alternative non-reactor-based options)

How IPFM Estimates Are Used

The Case of South Asia

What Next?

Demonstrating Methods Required for Nuclear Archaeology

NRX, Canada

Ågesta Reactor (105 MWt), near Stockholm, Sweden

Transparency Matrix, 2014

Information on nuclear warhead and fissile material inventories and status

	United States	Russia	Britain	France	China
Number of total warheads	Approximate	No	Yes (upper limit)	Yes (upper limit)	Relative (out of date)
Number of deployed warheads	Yes (strategic only)	Yes (strategic only)	Yes (planned)	Yes	No
Dismantlements	Yes	No	Yes (no details)	Yes (no details)	No
Verification	Partial	Partial	No	No	No
Fissile material stockpiles	Yes	No	Yes (no details)	No	No
Production histories	Yes	No	No	No	No
Excess/Disposal	Yes (nothing new)	Yes (nothing new)	Yes (nothing new)	No	No
Verification	Partial	Partial (but no longer)	Partial (some plutonium)	No	No

NPT PrepCom, New York, May 2014

