TWO-COLOR NEUTRON DETECTION FOR ZERO-KNOWLEDGE NUCLEAR WARHEAD VERIFICATION

Yan Jie and Alexander Glaser

56th INMM Meeting, Indian Wells, California, July 2015
PREVENTING THE EXCHANGE OF SENSITIVE INFORMATION

Trusted Information Barrier Protocol
- Measure sensitive Information
- Hard to authenticate and certify
- Single-bit observation

Interactive Zero-Knowledge Protocol
- Never measure sensitive information
- Easier to authenticate and certify
- More complex observation
OUR GENERAL APPROACH

TEMPLATE-MATCHING (using active neutron interrogation)
More difficult to implement than attribute approach, but also more robust against important diversion scenarios
Generally requires “golden warhead” to generate template (reference signature)

INTERACTIVE ZERO-KNOWLEDGE PROTOCOL
Can prove that a statement is true without revealing why it is true
In contrast to “traditional approaches,” no requirement for trusted information barrier

NON-ELECTRONIC DETECTORS
Electronic hardware and software used for detectors and, especially, for information barriers are hard to certify and authenticate
Technologies based on “physical” detection may offer important advantages
“ONE-COLOR” RADIOGRAPHY

14 MeV Neutron source
(Thermo Scientific P 385)

Collimator

Collimator slot

Test object

Detector array

(coming up next)
PROOF THAT TWO RADIOGRAPHS ARE IDENTICAL

ITEM B IS EQUAL TO ITEM A
PROOF THAT TWO RADIOGRAPHS ARE IDENTICAL

RADIOGRAPH
ITEM A

+ COMPLEMENT
ITEM A

FLAT BACKGROUND

RADIOGRAPH
ITEM B

+ COMPLEMENT
ITEM A

RESIDUAL IMAGE

ITEM B IS NOT EQUAL TO ITEM A
ZERO-KNOWLEDGE VERIFICATION

RADIOGRAPHY WITH 14 MeV NEUTRONS

Simulated data from MCNP calculations; neutron detection energies > 10 MeV; N(max) = 5,000

FISSION CROSS SECTIONS
OF THE MAIN URANIUM AND PLUTONIUM ISOTOPES
FISSION CROSS SECTIONS
OF THE MAIN URANIUM AND PLUTONIUM ISOTOPES

Idea:
Let’s interrogate with neutrons in the 300-keV range and look for fission neutrons (> 1 MeV)

Source: Evaluated Nuclear Data File (ENDF), www-nds.iaea.org/exfor/endf.htm
“TWO-COLOR”
NEUTRON SETUP
POSSIBLE IMPLEMENTATIONS

“ONE-COLOR” AND “TWO-COLOR” SETUPS FOR ACTIVE NEUTRON INTERROGATION

14 MeV SOURCE vs. D_n > 10 MeV

14 MeV SOURCE vs. D_n > 500 keV

300 keV SOURCE vs. D_n > 500 keV
POSSIBLE IMPLEMENTATIONS
“ONE-COLOR” AND “TWO-COLOR” SETUPS FOR ACTIVE NEUTRON INTERROGATION

- **14 MeV SOURCE**
 - **TEST ITEM**
 - **D_n > 10 MeV**
 - **TRANSMISSION RADIOGRAPH**

- **14 MeV SOURCE**
 - **TEST ITEM**
 - **D_n > 500 keV**
 - **FISSION SIGNATURE**

- **14 MeV SOURCE**
 - **TEST ITEM**
 - **D_n > 500 keV**
 - **FISSION SIGNATURE (AND TRANSMISSION RADIOGRAPH)**

- **300 keV SOURCE**
 - **TEST ITEM**
 - **D_n > 500 keV**
 - **D_n > 10 MeV**
 - **FISSION SIGNATURE (AND TRANSMISSION RADIOGRAPH)**

- **300 keV SOURCE**
 - **TEST ITEM**
 - **D_n > 500 keV**
 - **(D_n > 150 keV)**
 - **FISSION SIGNATURE (AND TRANSMISSION RADIOGRAPH)**
Total neutron yield curves for several reactions. (The DD and DT data for this plot is derived from reference 24 and refers to a fully loaded titanium target with deuterons accelerated into TiD$_2$ for the 2H(d,n)3He reaction and deuterons accelerated into TiT$_2$ for the 3H(d,n)4He reaction. The solid plots refer to 100% atomic beams, except for the 9Be(γ,n)8Be reaction, while the two dashed plots refer to 100% molecular ion beams.)

Fig. 5

Using the DD fusion reaction is a straightforward and often used technique for neutron production with particle accelerators. The reaction is exothermic and its cross section yields a useful neutron production rate with accelerating energies of O(100) keV and modest beam currents of O(100) μA.

Neutrons from this reaction start at ~2.5 MeV, they are roughly monoenergetic at lower accelerating energies but less so at higher energies, as shown in Fig. 6.

The low Q value for the reaction results in a forward-directed anisotropic yield even at low accelerating potentials, with the relative yield from 0° to 90° decreasing by 4× for an accelerating potential 0.5 MeV.[19] The low yield of this reaction compared with the others described here limits its use in many applications.

David L. Chichester, Production and Applications of Neutrons Using Particle Accelerators INL/EXT-09-17312, Idaho National Laboratory, November 2009
OPEN-SOURCE MONTE CARLO SIMULATIONS

SimLiT + GEANT 4
MODELING APPROACH

SIMLiT AND GEANT 4

SimLiT (shrek.phys.huji.ac.il/SimLiT)

- Dedicated Monte Carlo code to simulate neutrons from 7Li(p,n) reaction
- Ability to couple to Geant 4
- Open source (designed as a C++ class)

Geant 4 (geant4.cern.ch)

- A Monte Carlo simulation toolkit for the simulation of the passage of particles through matter; used in many scientific fields
- Open source (C++)
SIMULATED p-Li NEUTRON SOURCE

SPECTRUM CAN BE TAILORED BY ADJUSTING THE INCIDENT PROTON ENERGY AND THE THICKNESS OF THE LITHIUM TARGET
SIMPLIFIED EXPERIMENTAL SETUP

NEUTRON SOURCE, TEST ITEM, AND DETECTOR ARRAY

- Neutron source (p-Li)
- Test item
- Neutron detector array (25 x 25)
NOTIONAL TEST ITEMS

Fetter et al.’s Uranium Item (12 kg weapon-grade HEU)

- Reference item: 14.0 cm OD, 12 kg of HEU; 93% U-235
- Modified isotopics
- Modified diameter: 15.0 cm OD (same mass)

Fetter et al.’s Plutonium Item (4 kg weapon-grade Pu)

- Reference item: 10.0 cm OD, 4 kg of WPu; 93% Pu-239
- Modified isotopics
- Modified diameter: 11.0 cm OD (same mass)
RESULTS
300-keV DRIVEN FISSION SIGNATURES

Invalid item (75% U-235)

Valid item (93% U-235)

Invalid item (85% U-235)

Small deviation from N_{max}

Significant deviation from N_{max} (1.5, 2.0, 2.5, 3 Sigma)
300-keV DRIVEN FISSION SIGNATURES

- **Valid item (93% U-235)**
 - Bubble count distribution
 - Number of detectors
 - Detector index

- **Invalid item (larger diameter)**
 - Bubble count distribution
 - Number of detectors
 - Detector index

- **Number of detectors**
 - Small deviation from N_{max}
 - Significant deviation from N_{max} (1.5, 2.0, 2.5, 3 Sigma)

- **Template**
 - Valid
 - 75% U-235
 - 85% U-235
 - Same Mass, Larger
"TRANSMISSION RADIOGRAPH"

Invalid item (75% U-235)

Valid item (93% U-235)

Invalid item (larger diameter)

Bubble counts (with preload):
- 4400 4600 4800 5000 5200 5400 5600

Number of detectors:
- Small deviation from N_{\max}
- Significant deviation from N_{\max} (1.5, 2.0, 2.5, 3 Sigma)
ASSESSING THE RESULTS
USING THE KOLMOGOROV-SMIROV STATISTICAL TEST AS A PASS/FAIL CRITERION

<table>
<thead>
<tr>
<th></th>
<th>Uranium Item</th>
<th>Plutonium Item</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Radiograph</td>
<td>Fission signature</td>
</tr>
<tr>
<td>Valid item</td>
<td>0.988</td>
<td>0.987</td>
</tr>
<tr>
<td>75% U-235</td>
<td>0.872</td>
<td>0</td>
</tr>
<tr>
<td>85% U-235</td>
<td>0.986</td>
<td>0</td>
</tr>
<tr>
<td>Larger diameter</td>
<td>3.738E–05</td>
<td>0</td>
</tr>
</tbody>
</table>

As expected, radiography (here: using 300-keV neutrons) is not very sensitive to isotopic changes. Fission signature is very clear for uranium and plutonium items.
CONCLUSION AND OUTLOOK

“ONE-COLOR” SETUP

Neutron transmission radiography using high-energy (14 MeV) neutrons is effective in detecting geometric and elemental differences.

Distinguishing isotopic differences can be more challenging because relevant 14-MeV fission cross sections can be similar for some elements (esp. for Pu-239 vs Pu-240).

“TWO-COLOR” SETUP

Fission signatures triggered by ~ 300-keV neutrons are extremely sensitive to isotopic differences (and also to differences in geometry).

Combine with 14-MeV (and ~150-keV) transmission radiography.

Needed for experimental demonstration: Intense 2-MeV proton source.