INFORMATION SECURITY IN NUCLEAR WARHEAD VERIFICATION

Alexander Glaser
Department of Mechanical and Aerospace Engineering
and Woodrow Wilson School of Public and International Affairs
Princeton University

Workshop on New Technologies for Information Analysis to Support Non-Proliferation and Disarmament Verification
Vienna Center for Disarmament and Non-Proliferation
Vienna, December 12, 2014
WHAT IS NEW HERE?

THE CHALLENGES OF DEEP REDUCTIONS AND MULTILATERAL NUCLEAR ARMS CONTROL

NEW TREATIES MAY LIMIT TOTAL NUMBER OF WEAPONS

- Would then also include (non-deployed) weapons in storage
- Need to prepare for the transition from bilateral to multilateral nuclear arms control agreements

NEW TREATIES MAY REQUIRE BASELINE DECLARATIONS

- Applies to both nuclear warhead (and fissile material) inventories
- How to bring in countries that currently consider these numbers sensitive?

Source: Paul Shambroom (top) and U.S. Department of Energy (bottom)
WHAT IS TO BE VERIFIED?

VERIFICATION CHALLENGES OF NUCLEAR DISARMAMENT AT LOW NUMBERS

CORRECTNESS OF DECLARATIONS

- Warhead Counting
 Verify that numerical limit of declared items is not exceeded

- Warhead Authentication
 Verify authenticity of warheads prior to dismantlement

COMPLETENESS OF DECLARATIONS

- How to make sure that no covert warheads exist outside the verification regime?

Also (very) important, but not discussed here

INFORMATION SECURITY

DEFENDING INFORMATION FROM UNAUTHORIZED ACCESS, DISCLOSURE, MODIFICATION, OR DESTRUCTION
WARHEAD AUTHENTICATION AND VERIFIED WARHEAD DISMANTLEMENT

STANDARD APPROACHES PROTECT SENSITIVE INFORMATION WITH “INFORMATION BARRIERS”
(Classified information is “shielded” or “removed” during inspection)

Inspection System developed as part of the 1996–2002 Trilateral Initiative during a demonstration at Sarov
Source: Tom Shea

2nd Prototype of the Information Barrier developed as part of the UK-Norway Initiative
Source: David Chambers et al.
AN ALTERNATIVE APPROACH TO INFORMATION SECURITY

VERIFICATION PROTOCOLS AND MEASUREMENTS THAT DO NOT ACQUIRE SENSITIVE INFORMATION IN THE FIRST PLACE
VERIFICATION CHALLENGE #1

WARHEAD COUNTING
TAGGING NUCLEAR WARHEADS

(TRANSFORMING A “NUMERICAL LIMIT” INTO A “BAN ON UNTAGGED ITEMS”)

Source: www.automoblog.net

WARHEAD COUNTING OPTIONS

WITH VARIOUS LEVELS OF NON-INTRUSIVENESS AND ROBUSTNESS

1. Serial number on warhead
 - Non-intrusiveness: Simple
 - Robustness: Buddy Tag with serial number

2. Unique ID on warhead
 - Non-intrusiveness: Buddy Tag with serial number
 - Robustness: Buddy Tag with serial number

3. Simple Buddy Tag
 - Non-intrusiveness: Buddy Tag with serial number
 - Robustness: Buddy Tag with serial number

4. Buddy Tag with serial number
 - Non-intrusiveness: Buddy Tag with serial number
 - Robustness: Buddy Tag with serial number

UNIQUE IDENTIFIERS
(e.g. Reflective Particle Tags)

Reflective particle tag concept: A. Gonzales, Reflective Particle Tag for Arms Control and Safeguards Authentication, Sandia National Laboratories, 2004
Buddy tag concept: S. E. Jordan, Buddy Tag’s Motion Sensing and Analysis Subsystem, Sandia National Laboratories, 1991
OPTION FOR A MINIMALLY INTRUSIVE ONSITE INSPECTION

USING BUDDY TAGS WITHOUT DIRECT ACCESS TO TREATY ACCOUNTABLE ITEMS

Hypothetical nuclear warhead storage facility
VERIFICATION CHALLENGE #2

WARHEAD AUTHENTICATION

(WILL YOU KNOW A NUCLEAR WEAPON WHEN YOU SEE ONE?)
Zero-Knowledge Proofs: The prover (P) convinces the verifier (V) that s/he knows a secret without giving anything about the secret itself away.

Graphics adapted from O. Goldreich, *Foundations of Cryptography*, Cambridge University Press, 2001; and eightbit.me
ZERO-KNOWLEDGE WARHEAD VERIFICATION

(AUTHENTICATING WARHEADS WITHOUT EVER MEASURING CLASSIFIED INFORMATION)

If the host is honest and presents a valid warhead, the inspector will only see random noise.

If the host tries to cheat and presents a fake warhead, non-random patterns will become visible.

See also: “Not-seeing is Believing,” *Science*, 344 (6191), 27 June 2014, 1436–1437
WAY FORWARD

PREPARING FOR DEEP REDUCTIONS AND MULTILATERAL NUCLEAR ARMS CONTROL

TAKING INFORMATION SECURITY SERIOUSLY

- Jointly develop and demonstrate methods to count and authenticate nuclear warheads
- Focus initially on non-intrusive approaches that are acceptable to all participants (but can accommodate “upgrades”)

THINKING OUTSIDE THE BOX

- Example 1: Virtual Environments
 Explore minimally intrusive inspection protocols; no sensitive information at risk
- Example 2: Modern Cryptography
 Explore concepts that do not acquire sensitive information (e.g. via zero-knowledge)
ACKNOWLEDGEMENTS

PRINCETON

Sébastien Philippe (PhD, MAE)
Robert J. Goldston (AST and PPPL)
Boaz Barak (Microsoft Research New England)
Charles Gentile (PPPL)
Mark Walker (PhD, WWS)

ELSEWHERE

Francesco d’Errico (Yale University)
Moritz Kütt (Technische Universität Darmstadt)
Tamara Patton (Vienna Center for Disarmament and Nonproliferation)

RESEARCH-supported BY

Global Zero
MacArthur Foundation
Carnegie Corporation of New York
U.S. Department of State
National Nuclear Security Administration, U.S. Department of Energy