
MAE 545: Lecture 13,14 (4/6, 4/11)
Osmotic pressure and 

mechanics of cell membranes
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Free energy of dilute solutions

Figure from R. Phillips et al., 
Physical Biology of the Cell
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6.2.2 Free Energy of Dilute Solutions

One of the central ideas about entropy in this book is that there are
a few basic implementations of Boltzmann’s assertion that S = kB ln W
that arise over and over in carrying out statistical mechanical reason-
ing. The ideal gas illustrates the way in which kinetic energy may
be shared among a bunch of different molecules. The other crowning
example in which we can simply calculate the entropy is embodied in
the formula

W(N,!) = !!
N !(!−N)!

, (6.77)

which instructs us about the configurational entropy associated with
rearranging N objects amongst ! boxes. How can this simple formula
help us think about the free energy of solutions? In Section 5.5.2
(p. 225), we showed that two subsystems are in chemical equilib-
rium when their chemical potentials are equal. If we are to consider
an aqueous solution with some dilute population of molecules, or
alternatively, if we are to think about the interactions of gene regu-
latory proteins and DNA in solution, how are we to write the chemical
potentials of the various species of interest?

(A)

(B)

(C)

solvent
(water) solute

Figure 6.21: Idealization of a dilute
solution as a system on a lattice.
(A) Cartoon of the actual solution in
which the species of interest is dilute
and wanders around freely in solution.
(B) Three-dimensional and (C)
two-dimensional lattice idealization of
the situation in (A) in which the
molecules of interest are restricted to
visit sites on a lattice.

The Chemical Potential of a Dilute Solution Is a Simple Logarithmic
Function of the Concentration

To make progress on the question of how to write the chemical poten-
tials for dilute solutions like those described above, we appeal to
lattice models. Lattice models have been used to great advantage
as a discretization trick that allows for the performance of combina-
toric arguments in a way that is analytically tractable. For our present
purposes, we imagine our system (water + solute) as being built up as
a series of lattice sites as shown in Figure 6.21. These lattice models
were introduced in Section 6.1.1 (p. 241) and illustrated in Figure 6.1
(p. 238). By restricting the set of allowed positions for the molecules
of interest to the sites of a lattice, we have a countable set of distinct
states that can be enumerated explicitly.

We write the number of water molecules as NH2O, while the num-
ber of solute molecules is given by Ns. Our objective is to write the
total free energy of this system and then to obtain the solute chemical
potential through the relation

µsolute =
(
∂Gtot

∂Ns

)

T ,p
. (6.78)

Intuitively, the chemical potential really tells us the free energy cost
associated with changing the number of solute molecules in solution
by 1 as

µsolute = Gtot(Ns + 1)−Gtot(Ns). (6.79)

The reader is invited to explore this more deeply as well as the con-
nection to the partition function in the problems at the end of the
chapter. We argue that the free energy is given by

Gtot = NH2Oµ0
H2O

water free energy

+ Nsεs

solute energy

− TSmix

mixing entropy

. (6.80)
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6.2.2 Free Energy of Dilute Solutions

One of the central ideas about entropy in this book is that there are
a few basic implementations of Boltzmann’s assertion that S = kB ln W
that arise over and over in carrying out statistical mechanical reason-
ing. The ideal gas illustrates the way in which kinetic energy may
be shared among a bunch of different molecules. The other crowning
example in which we can simply calculate the entropy is embodied in
the formula

W(N,!) = !!
N !(!−N)!

, (6.77)

which instructs us about the configurational entropy associated with
rearranging N objects amongst ! boxes. How can this simple formula
help us think about the free energy of solutions? In Section 5.5.2
(p. 225), we showed that two subsystems are in chemical equilib-
rium when their chemical potentials are equal. If we are to consider
an aqueous solution with some dilute population of molecules, or
alternatively, if we are to think about the interactions of gene regu-
latory proteins and DNA in solution, how are we to write the chemical
potentials of the various species of interest?
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Figure 6.21: Idealization of a dilute
solution as a system on a lattice.
(A) Cartoon of the actual solution in
which the species of interest is dilute
and wanders around freely in solution.
(B) Three-dimensional and (C)
two-dimensional lattice idealization of
the situation in (A) in which the
molecules of interest are restricted to
visit sites on a lattice.

The Chemical Potential of a Dilute Solution Is a Simple Logarithmic
Function of the Concentration

To make progress on the question of how to write the chemical poten-
tials for dilute solutions like those described above, we appeal to
lattice models. Lattice models have been used to great advantage
as a discretization trick that allows for the performance of combina-
toric arguments in a way that is analytically tractable. For our present
purposes, we imagine our system (water + solute) as being built up as
a series of lattice sites as shown in Figure 6.21. These lattice models
were introduced in Section 6.1.1 (p. 241) and illustrated in Figure 6.1
(p. 238). By restricting the set of allowed positions for the molecules
of interest to the sites of a lattice, we have a countable set of distinct
states that can be enumerated explicitly.

We write the number of water molecules as NH2O, while the num-
ber of solute molecules is given by Ns. Our objective is to write the
total free energy of this system and then to obtain the solute chemical
potential through the relation

µsolute =
(
∂Gtot

∂Ns

)

T ,p
. (6.78)

Intuitively, the chemical potential really tells us the free energy cost
associated with changing the number of solute molecules in solution
by 1 as

µsolute = Gtot(Ns + 1)−Gtot(Ns). (6.79)

The reader is invited to explore this more deeply as well as the con-
nection to the partition function in the problems at the end of the
chapter. We argue that the free energy is given by

Gtot = NH2Oµ0
H2O

water free energy

+ Nsεs

solute energy

− TSmix

mixing entropy

. (6.80)
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Chemical potentials in dilute solution

Figure from R. Phillips et al., 
Physical Biology of the Cell
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6.2.2 Free Energy of Dilute Solutions

One of the central ideas about entropy in this book is that there are
a few basic implementations of Boltzmann’s assertion that S = kB ln W
that arise over and over in carrying out statistical mechanical reason-
ing. The ideal gas illustrates the way in which kinetic energy may
be shared among a bunch of different molecules. The other crowning
example in which we can simply calculate the entropy is embodied in
the formula

W(N,!) = !!
N !(!−N)!

, (6.77)

which instructs us about the configurational entropy associated with
rearranging N objects amongst ! boxes. How can this simple formula
help us think about the free energy of solutions? In Section 5.5.2
(p. 225), we showed that two subsystems are in chemical equilib-
rium when their chemical potentials are equal. If we are to consider
an aqueous solution with some dilute population of molecules, or
alternatively, if we are to think about the interactions of gene regu-
latory proteins and DNA in solution, how are we to write the chemical
potentials of the various species of interest?
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Figure 6.21: Idealization of a dilute
solution as a system on a lattice.
(A) Cartoon of the actual solution in
which the species of interest is dilute
and wanders around freely in solution.
(B) Three-dimensional and (C)
two-dimensional lattice idealization of
the situation in (A) in which the
molecules of interest are restricted to
visit sites on a lattice.

The Chemical Potential of a Dilute Solution Is a Simple Logarithmic
Function of the Concentration

To make progress on the question of how to write the chemical poten-
tials for dilute solutions like those described above, we appeal to
lattice models. Lattice models have been used to great advantage
as a discretization trick that allows for the performance of combina-
toric arguments in a way that is analytically tractable. For our present
purposes, we imagine our system (water + solute) as being built up as
a series of lattice sites as shown in Figure 6.21. These lattice models
were introduced in Section 6.1.1 (p. 241) and illustrated in Figure 6.1
(p. 238). By restricting the set of allowed positions for the molecules
of interest to the sites of a lattice, we have a countable set of distinct
states that can be enumerated explicitly.

We write the number of water molecules as NH2O, while the num-
ber of solute molecules is given by Ns. Our objective is to write the
total free energy of this system and then to obtain the solute chemical
potential through the relation

µsolute =
(
∂Gtot

∂Ns

)

T ,p
. (6.78)

Intuitively, the chemical potential really tells us the free energy cost
associated with changing the number of solute molecules in solution
by 1 as

µsolute = Gtot(Ns + 1)−Gtot(Ns). (6.79)

The reader is invited to explore this more deeply as well as the con-
nection to the partition function in the problems at the end of the
chapter. We argue that the free energy is given by
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Osmotic pressure
Figure from R. Phillips 

et al., Physical 
Biology of the CellSmall water molecules  

can pass through a 
semipermeable membrane, 
which blocks large solute 

macromolecules.

In thermodynamic equilibrium the Gibbs free energy G is 
minimized, which means that chemical potentials of water are 

the same on both sides of the semipermeable membrane!

µH2O(T, p1, 0) = µH2O(T, p2, cs)

G = N1µH2O(T, p1, 0) +N2µH2O(T, p2, cs) +Nsµs(T, p2, cs)

pressure
pressure

p1
p2
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this section, we will explore a simple mathematical formulation of the
idea of osmotic pressure.

An immediate and important biological application of our analysis
of dilute solutions is to the problem of osmotic pressure. The basic
idea behind the emergence of osmotic pressure is that the presence of
a semipermeable membrane can result in the rearrangement of those
molecules to which the membrane is permeable and the setting up
of an attendant pressure. To see this, consider the model geometry
shown in Figure 6.22, which shows a container with an internal mem-
brane that is permeable to water but not to the solute molecules of
interest. As a result of the permeability of the membrane to water, the
equilibrium state is characterized by equality of chemical potentials
for the water molecules on both sides of the container. (Revisit Sec-
tion 5.5.2 (p. 225) to see how entropy maximization implies equality
of chemical potentials.)

semipermeable
membrane

H2O
molecules

solution of 
macromolecules

in H2O

Figure 6.22: Schematic of a
container with a semipermeable
membrane with molecules in solution
in one side of the container and pure
solvent in the other.

The chemical potential of the water molecules on the side of the
membrane with the dilute concentration of solute molecules can be
derived by appealing to Equation 6.85 and in particular by evaluating
µH2O(T , p) = ∂Gtot/∂NH2O. Note that here we make explicit the depen-
dence of the chemical potential on the pressure and the temperature.
The resulting expression is

µH2O(T , p) = µ0
H2O(T , p)− Ns

NH2O
kBT . (6.89)

The equilibrium between the two sides may now be expressed via the
equation

µH2O0(T , p1)

solute-free side

= µ0
H2O(T , p2)− Ns

NH2O
kBT

side with solutes

. (6.90)

Note that we have already asserted that there will be a pressure dif-
ference between the two sides by introducing the notation p1 for the
pressure on the pure water side of the container and p2 for the pres-
sure on the side containing the solute molecules. We now expand the
chemical potential on the right-hand side around p1 as

µ0
H2O(T , p2) ≈ µ0

H2O(T , p1) +
(
∂µ0

H2O

∂p

)

(p2 − p1). (6.91)

As a result of the thermodynamic relation ∂µ/∂p = v, where v is the
volume per molecule, this equation can be transformed into

p2 − p1 = Ns

V
kBT , (6.92)

where V = NH2Ov is, to a very good approximation, equal to the total
volume on the solute side of the semipermeable membrane. This
relation is known as the van’t Hoff formula and it gives the osmotic
pressure as a function of the concentration of the solute.

Viruses, Membrane-Bound Organelles, and Cells Are Subject to
Osmotic Pressure

Osmotic pressure arises in many different contexts. From a biologi-
cal point of view, the existence of osmotic pressure can give rise to
mechanical insults that cells and viruses must find ways to endure.
In particular, cell membranes and viral capsids are permeable to

ON BEING IDEAL 265

semipermeable 
membrane
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Osmotic pressure
Figure from R. Phillips 

et al., Physical 
Biology of the Cell
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this section, we will explore a simple mathematical formulation of the
idea of osmotic pressure.

An immediate and important biological application of our analysis
of dilute solutions is to the problem of osmotic pressure. The basic
idea behind the emergence of osmotic pressure is that the presence of
a semipermeable membrane can result in the rearrangement of those
molecules to which the membrane is permeable and the setting up
of an attendant pressure. To see this, consider the model geometry
shown in Figure 6.22, which shows a container with an internal mem-
brane that is permeable to water but not to the solute molecules of
interest. As a result of the permeability of the membrane to water, the
equilibrium state is characterized by equality of chemical potentials
for the water molecules on both sides of the container. (Revisit Sec-
tion 5.5.2 (p. 225) to see how entropy maximization implies equality
of chemical potentials.)
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Figure 6.22: Schematic of a
container with a semipermeable
membrane with molecules in solution
in one side of the container and pure
solvent in the other.

The chemical potential of the water molecules on the side of the
membrane with the dilute concentration of solute molecules can be
derived by appealing to Equation 6.85 and in particular by evaluating
µH2O(T , p) = ∂Gtot/∂NH2O. Note that here we make explicit the depen-
dence of the chemical potential on the pressure and the temperature.
The resulting expression is

µH2O(T , p) = µ0
H2O(T , p)− Ns

NH2O
kBT . (6.89)

The equilibrium between the two sides may now be expressed via the
equation

µH2O0(T , p1)

solute-free side

= µ0
H2O(T , p2)− Ns

NH2O
kBT

side with solutes

. (6.90)

Note that we have already asserted that there will be a pressure dif-
ference between the two sides by introducing the notation p1 for the
pressure on the pure water side of the container and p2 for the pres-
sure on the side containing the solute molecules. We now expand the
chemical potential on the right-hand side around p1 as

µ0
H2O(T , p2) ≈ µ0

H2O(T , p1) +
(
∂µ0

H2O

∂p

)

(p2 − p1). (6.91)

As a result of the thermodynamic relation ∂µ/∂p = v, where v is the
volume per molecule, this equation can be transformed into

p2 − p1 = Ns

V
kBT , (6.92)

where V = NH2Ov is, to a very good approximation, equal to the total
volume on the solute side of the semipermeable membrane. This
relation is known as the van’t Hoff formula and it gives the osmotic
pressure as a function of the concentration of the solute.

Viruses, Membrane-Bound Organelles, and Cells Are Subject to
Osmotic Pressure

Osmotic pressure arises in many different contexts. From a biologi-
cal point of view, the existence of osmotic pressure can give rise to
mechanical insults that cells and viruses must find ways to endure.
In particular, cell membranes and viral capsids are permeable to
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µH2O(T, p1, 0) = µH2O(T, p2, cs)

µH2O(T, p2, cs) = µ0
H2O(T, p2)� kBTcsv
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concentration of macromolecules to 
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Osmotic pressure in cells

hypotonic
solution

isotonic
solution

hypertonic
solution

If extracellular solution has 
different concentration of ions 
from the interior of cells, then 
the resulting flow of water can 

cause the cell to shrink or 
swell and even burst.

cs,out ⌧ cs,in cs,out � cs,incs,out ⇠ cs,in

Cells use ion channels and ion pumps 
to regulate concentration of ions and 

therefore also the cell volume.

(Note: cell membrane is impermeable 
for charged particles)
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Osmotic pressure in bacteria

Bacteria have strong cell wall 
that can support large osmotic 

pressure (Turgor pressure).

⇧ ⇠ 105Pa ⇠ 1bar

Antibiotics cause damage to cell 
wall and as a result cells rupture 

due to large Turgor pressure.
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Cell membranes
E. ColiEukaryotic cells
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rough
endoplasmic
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nuclear pore
complex
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complex
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cell wall

lipopolysaccharide

FIBROBLAST

E. COLI

1 mm

10 mm

Figure 11.2: Key examples of membranes in biological systems. Eukaryotic cells, such as this fibroblast, are rife with many
specialized membranes. The plasma membrane is a single phospholipid bilayer riddled with membrane proteins. The rough
endoplasmic reticulum, also a single bilayer, is the site of synthesis of membrane-bound and secreted proteins. The ribosomes
synthesizing these proteins are intimately associated with a transport apparatus in the endoplasmic reticulum membrane. The
nuclear envelope consists of two phospholipid bilayers with a thin space between them. This nuclear envelope is perforated by
nuclear pores that permit transport of materials from the cytoplasm to the nucleus and back. Bacterial cells rarely have internal
membranous organelles, but may have very complex external membranes. For E. coli, the cell envelope consists of two
bilayers—an inner membrane and an outer membrane—separated by a rigid cell wall. The outer leaflet of the outer membrane
is largely composed of an unusual molecule called lipopolysaccharide, rather than of phospholipids.

are associated with their organelles as illustrated in Figures 11.3(C)
and (D), which show the layered membrane structure in a rod cell
and in a mitochondrion with surrounding endoplasmic reticulum,
respectively.

The starting point for thinking about membrane organization is that
its shape is dictated by the physical properties of the two layers of
phospholipids that make up the lipid bilayer. This lipid bilayer is
two lipid molecules thick, riddled with a dazzling array of membrane
proteins. Figure 11.4 shows several generations of models for cell
membrane structure. The fluid mosaic model of Singer and Nicolson
(1972) envisioned a lipid bilayer as a two-dimensional fluid in which
embedded membrane proteins were able to easily move laterally in
the plane of the membrane, but could not move out of the plane.

Later versions of this model acknowledged the fact that there is
a great deal of structural heterogeneity within the lipid bilayer. For
example, membranes containing multiple types of lipids that tend
to mix nonideally can have a complex organization in which struc-
turally compatible lipids assemble into microdomains. Along similar
lines, membrane proteins can generate local order in the lipids that
surround them and lipid domains can strongly influence protein orga-
nization. In living cells, the membrane does not exist in isolated
two-dimensional splendor—long branched chains of carbohydrates
protrude into the third dimension and structural elements within
the cell such as the cytoskeleton interact extensively with membrane
components to shape the membrane surface.

430 Chapter 11 BIOLOGICAL MEMBRANES

R. Phillips et al., Physical 
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Cell membrane

5nm

lipids
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Lipid membrane behaves like fluid

membrane lipid
membrane protein

membrane protein

Lipid molecules and 
proteins can move around!

Flipping of lipid molecules 
between the layer is unlikely.
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Alberts et al., Molecular 
Biology of the Cell

Membrane attached spectrin network 
provides solid-like behavior

Spectrin network 
provides structural 

stability for cells

red blood cell capillary

7.5µm

a few microns in 
diameter 
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Lipid membrane

In water solution lipid molecules 
spontaneously aggregate to prevent 

undesirable interactions between 
water and hydrophobic tails. 
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Flat lipid bilayers vs lipid vesicles

bending energy cost
energy cost on the edge 
between lipid tails and 

water molecules

flat bilayer vesicle

L

2R

E / L E / const

Large vesicles have lower energy cost then flat bilayers!
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bilayer micelle HII-phase

Figure 11.7: Geometrical shape of
lipids. This figure shows a
coarse-grained representation of lipid
geometries that is useful in developing
intuition for the spontaneous curvature
induced by different lipid types. The
small insets show the kinds of
three-dimensional geometries adopted
by these lipids.

The Shapes of Lipid Molecules Can Induce Spontaneous Curvature on
Membranes

Thus far, we have largely focused on the chemical properties of lipids.
In addition, certain intuitive features of lipid packing in membranes
can be understood on the basis of the geometry of those molecules.
In particular, depending upon the number of tails, the degree of satu-
ration of the bonds in the tails, and the size of the headgroups, these
molecules can have strong geometrical anisotropy. Figure 11.7 gives
a feeling for the different kinds of geometries. Several of the books in
the Further Reading at the end of the chapter (for example, Boal 2002
and Israelachvili 2011) describe the connection between the shapes of
individual molecules and the kinds of assemblies they form.

When two or more lipids with different geometries must coexist in
a single structure, they sometimes tend to segregate into separate
domains. Under some conditions, this spontaneous segregation can
induce the generation of complex vesicle geometries where different
domains have different curvatures as shown in Figure 11.8. Inside
cells, this kind of lipid heterogeneity together with the influence of
membrane-associated proteins as discussed below can contribute to
formation of elaborate intracellular membrane systems.

5 mm 5 mm

Figure 11.8: Structures of
multicomponent vesicles. Vesicles
made of more than one species of lipid
can give rise to structures with complex
geometries. Different lipid species are
labeled with different fluorescent dyes,
shown here in red and blue. The lipids
with distinct physical properties tend to
spontaneously segregate into domains.
On the left, a vesicle at low temperature
(25 ◦C) exhibits two large domains. The
line tension caused by the mismatch at
the boundary between the two domains
(discussed later in the chapter) causes a
deformation of the vesicle, such that
one domain (blue) adopts a higher
curvature than the other (red). On the
right, a similar vesicle held at a higher
temperature (50 ◦C) adopts a much
more complicated shape. The individual
domains are smaller, and the overall
shape again separates regions with
high curvature (red) from regions with
low curvature (blue). (Adapted from
T. Baumgart et al., Nature 425:821,
2003).

11.1.3 The Liveliness of Membranes

The major biological function of membranes is to separate cells and
organelles from their surroundings, but at the same time, cells and
organelles must communicate and exchange material with the external
world. The critical functional modifications to biological membranes
that enable this exchange are generally mediated by proteins, which
make up a large fraction of the mass of the membrane (see the
estimate below to get a feeling for the numbers). From a general per-
spective, the structures of many of these proteins can be thought of as
having three distinct parts: an intracellular domain, a transmembrane
domain, and an extracellular domain. Figure 11.9 shows a gallery of
some representative examples of such proteins whose functions are
detailed in the following paragraphs.

E
S

T
IM

A
T

E
 

Estimate: Sizing Up Membrane Heterogeneity In Chap-
ter 2, we estimated our way to a census of a bacterium like
E. coli that included an estimate of the protein complement
of the membranes. One way to state the importance of mem-
brane proteins is through the estimate that roughly one-third
of the genes in a typical genome encode membrane proteins.
In the case of E. coli, this led us to the estimate that there
are 106 such proteins per cell. Since a bacterium like E. coli
has two membrane systems, we can naively imagine that there

436 Chapter 11 BIOLOGICAL MEMBRANES

R. Phillips et al., Physical 
Biology of the Cell

Shape of lipid molecules can induce 
spontaneous curvature of structures

inverted
micelle

bilayer micelle
H-II phase
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Membrane proteins can induce 
spontaneous curvature

a

b

c

Clathrin–adaptor-protein 
complexes
Adaptor proteins recruit 
clathrin to membranes and 
concentrate specific 
transmembrane proteins in 
clathrin-coated areas of the 
membrane. Clathrin is a protein 
that exists in a trimeric form 
called a triskelion, and clathrin 
triskelia polymerize to form 
cage-like structures.

BAR domain
(‘Bin, amphiphysin, Rvs’ 
domain). A domain that is 
found in a large family of 
proteins. It forms a banana-like 
dimer, and binds to and 
tubulates lipid membranes.

Endophilins
A family of proteins that 
contain a BAR (Bin, 
amphiphysin, Rvs) domain with 
extra amphipathic helices. 
Endophilin-1 binds to and 
tubulates lipid membranes.

Figure 3 | Mechanisms by which proteins can generate 
membrane curvature. a | The scaffold mechanism. A rigid 
protein, or protein domain (for example, the BAR (Bin, 
amphiphysin, Rvs) domain), that has an intrinsic curvature 
binds to the membrane surface and bends the membrane 
beneath it. b | Polymerized coat proteins, which are 
sometimes linked to membranes through adaptor proteins 
(not shown), stabilize membrane curvature. c | The local 
spontaneous curvature mechanism is mediated by the 
insertion of amphipathic moieties of proteins between the 
polar headgroups of lipid molecules. A BAR domain is 
shown here inserting amphipathic helices into the 
monolayer it contacts74.

the total areas of the two lipid monolayers. In a key 
biologically relevant situation, such as membrane-car-
rier formation, protein insertion is expected to occur 
only locally in membrane spots that have areas that are 
negligible compared to the total membrane area. Even 
if the local membrane concentration of the inserted 
protein domains was considerable, the effect would be 
averaged over the total membrane area, so it would 
provide a negligible contribution to the total area dif-
ference between the membrane leaflets.

Proteins bend membranes: biological examples
Scaffold mechanism. The scaffold mechanism is 
straightforward and might underlie the function of 
many well-studied membrane-curving proteins59. It 
proposes that all of the protein coats that are known to 
cover the surface of membrane invaginations and buds 
function as scaffolds for membrane curvature (FIG. 3b). 
Within this idea, the COPI and COPII complexes and 
the clathrin–adaptor-protein complexes provide scaffolds 
for spherical curvature, whereas dynamin and BAR (Bin, 
amphiphysin, Rvs)-domain-containing proteins (includ-
ing endophilin) wrap around membranes and provide 
scaffolds for cylindrical curvature26.

The clearest way to visualize the scaffold mechanism 
is to consider the formation of cylindrical membranes 
by dynamin and BAR-domain-containing proteins. 
The dynamin helix self-assembles in the absence of 
lipid into rings and helices60, which means that it is 
characterized by the intrinsically bent shape of a ‘split 
lock washer’ (recent structural data confirm this; 
J. Hinshaw, personal communication). Furthermore, 
dynamin binds to lipid membranes and forms cylin-
drical coats that have the same helical structure and 
cross-section radius as the pure dynamin helix36,61–68. 
This means that the rigidity of the dynamin coat is 
greater than that of the lipid bilayer and that dynamin 
binding to lipids is sufficiently strong to allow the scaf-
fold mechanism to work in membrane shaping and, 
probably, membrane fission67,69–72.

The BAR domain has a banana-like shape73,74, and 
its concave surface binds the lipid membrane (FIG. 3c). 
It therefore satisfies the criterion of having the correct 
intrinsic shape. In addition, the protein has 12 positively 
charged residues on its concave surface, which allows 
it to interact strongly with the negatively charged polar 
headgroups of the lipid molecules. The energy of this 
interaction is predicted to be 6–12 kcalmol–1 per domain 
for membranes that contain 15–30% negatively 
charged lipid headgroups75. As four BAR domains 
circle cylindrical membranes, this energy is more 
than the membrane-bending energy (which is about 
20kBT), which means that the criterion of a high 
affinity of the protein for the membrane is also satis-
fied75. In general, the electrostatic interaction between 
lipids and proteins is one of the important factors that 
determines membrane shape. Although there are no 
data available regarding the intrinsic rigidity of BAR 
domains, presumably the bundling of the helices that 
constitute a BAR domain lends rigidity. The curvature 
of many membrane tubes that are covered by these 

domains is close to the curvature of the concave BAR-
domain surface. This implies that the protein domains 
are more rigid than lipid bilayers, which would satisfy 
the last criterion of the scaffold mechanism.

For all of the other protein complexes that are 
assumed to function according to the scaffold mecha-
nism, the data justifying this assumption are not avail-
able at present. Clathrin and its complex with adaptor 
proteins, which is required for membrane binding, 
self-assembles in the absence of lipid into cages, the 
polyhedral shapes of which can be approximated 
by spheres that have curvatures comparable to, or 
even smaller than, the curvatures of clathrin-coated 
vesicles16,76,77. This means that clathrin complexes are 
characterized by an intrinsically curved shape that 
is necessary for the scaffold mechanism. In fact, by 
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Figure 11.13: The geometry of
membrane deformation. From top to
bottom we illustrate stretching of a
membrane, bending of a membrane,
thickness deformation of a membrane,
and shearing of a membrane.

which proteins can influence the thickness of the surrounding bilayer.
Finally, to understand the various shapes of red blood cells, we will
have to consider shear deformations of the cell membrane and its
associated spectrin network. To get a sense geometrically for how
such deformations work, we will repeatedly appeal to the square patch
of membrane shown in Figure 11.13. There are many subtleties lay-
ered on top of the treatment here, but a full treatment of this rich
topic would take us too far afield, and we content ourselves with the
pictorial representations shown here.

Membrane Stretching Geometry Can Be Described by a Simple Area
Function

The top image in Figure 11.13 illustrates the first class of defor-
mations we will consider, namely, when the area of the patch of
membrane is increased by an amount!a. Just as the parameter !L was
introduced in Section 5.4.1 (p. 216) to characterize the homogeneous
stretching of a beam, the parameter !a will provide a simple way
to characterize the change in the area of a membrane. To be explicit
about the fact that the amount of stretch could in principle vary at
different points on the membrane, we introduce a function !a(x, y)

that tells us how the area of the patch of membrane at position (x, y)

is changed upon deformation.

Membrane Bending Geometry Can Be Described by a Simple Height
Function, h(x,y)

To consider bending deformations, we treat surfaces as shown in
Figure 11.14. We lay down an x–y grid on the reference plane and we
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Figure 11.13: The geometry of
membrane deformation. From top to
bottom we illustrate stretching of a
membrane, bending of a membrane,
thickness deformation of a membrane,
and shearing of a membrane.

which proteins can influence the thickness of the surrounding bilayer.
Finally, to understand the various shapes of red blood cells, we will
have to consider shear deformations of the cell membrane and its
associated spectrin network. To get a sense geometrically for how
such deformations work, we will repeatedly appeal to the square patch
of membrane shown in Figure 11.13. There are many subtleties lay-
ered on top of the treatment here, but a full treatment of this rich
topic would take us too far afield, and we content ourselves with the
pictorial representations shown here.

Membrane Stretching Geometry Can Be Described by a Simple Area
Function

The top image in Figure 11.13 illustrates the first class of defor-
mations we will consider, namely, when the area of the patch of
membrane is increased by an amount!a. Just as the parameter !L was
introduced in Section 5.4.1 (p. 216) to characterize the homogeneous
stretching of a beam, the parameter !a will provide a simple way
to characterize the change in the area of a membrane. To be explicit
about the fact that the amount of stretch could in principle vary at
different points on the membrane, we introduce a function !a(x, y)

that tells us how the area of the patch of membrane at position (x, y)

is changed upon deformation.

Membrane Bending Geometry Can Be Described by a Simple Height
Function, h(x,y)

To consider bending deformations, we treat surfaces as shown in
Figure 11.14. We lay down an x–y grid on the reference plane and we
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CHAPTER 1. PHENOMENOLOGY OF MEMBRANES

Figure 1.7: Representative shapes from the stomatocyte–discocyte–echinocyte sequence of red blood
cells obtained from experiments (left images) and theory (right plots). See also Sec. 3.3. (After
Ref. [6].)

Figure 1.8: Schematic illustration of the great diversity in cell shape found in nature, with E. coli,
which roughly has the shape of a cylinder of length 2 µm and thickness/height 1 µm, as a “measurement
stick”. For details, see Fig. 2.8 of Ref. [3]. (After Ref. [3].)

10

It is hard to experimentally measure 
the Gaussian bending rigidity for 
cells, because cell deformations 

don’t change the topology!
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Figure 11.13: The geometry of
membrane deformation. From top to
bottom we illustrate stretching of a
membrane, bending of a membrane,
thickness deformation of a membrane,
and shearing of a membrane.

which proteins can influence the thickness of the surrounding bilayer.
Finally, to understand the various shapes of red blood cells, we will
have to consider shear deformations of the cell membrane and its
associated spectrin network. To get a sense geometrically for how
such deformations work, we will repeatedly appeal to the square patch
of membrane shown in Figure 11.13. There are many subtleties lay-
ered on top of the treatment here, but a full treatment of this rich
topic would take us too far afield, and we content ourselves with the
pictorial representations shown here.

Membrane Stretching Geometry Can Be Described by a Simple Area
Function

The top image in Figure 11.13 illustrates the first class of defor-
mations we will consider, namely, when the area of the patch of
membrane is increased by an amount!a. Just as the parameter !L was
introduced in Section 5.4.1 (p. 216) to characterize the homogeneous
stretching of a beam, the parameter !a will provide a simple way
to characterize the change in the area of a membrane. To be explicit
about the fact that the amount of stretch could in principle vary at
different points on the membrane, we introduce a function !a(x, y)

that tells us how the area of the patch of membrane at position (x, y)

is changed upon deformation.

Membrane Bending Geometry Can Be Described by a Simple Height
Function, h(x,y)

To consider bending deformations, we treat surfaces as shown in
Figure 11.14. We lay down an x–y grid on the reference plane and we
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Figure 11.20: Schematic of the energy
penalty associated with average
bending of the bilayer. (A) The
undeformed state of the membrane.
(B) A membrane that has suffered a
bending deformation resulting in
relative tilt of neighboring lipid
molecules.

(A) (B)

There Is a Free-Energy Penalty Associated with Bending a Lipid Bilayer

When a patch of lipid bilayer is bent away from its flat zero-energy
state (assuming there is no spontaneous curvature), there is a rear-
rangement of both the headgroups and the tails of the lipids within
the bilayer. Loosely speaking, we can think of these rearrangements
as being equivalent to stretching and compressing springs as shown
in Figure 11.20. More precisely, the free energy of bending can be
written in terms of the curvature as

Gbend[h(x, y)] = Kb
2

∫
da [κ1(x, y) + κ2(x, y)]2, (11.7)

a model sometimes known as the Helfrich–Canham–Evans free energy.
We have introduced the notations κ1 and κ2 to represent the princi-
pal curvatures of the surface at the point of interest and they may be
thought of as the outcome of diagonalizing the matrix κij that appears
in Equation 11.3. The mean curvature is defined as κ̄ = (κ1 + κ2)/2.
What this equation really instructs us to do is to visit every point
on the surface, find its curvature, and compute κ̄2 at that point, and
then to add up the energy over all points on the membrane.

Note that the bending free energy introduced in Equation 11.7
involves a new material parameter, Kb, the bending rigidity. Since
the units of κ are 1/length (as can be seen from the definition of the
curvature as the second derivative, length/length2) and da has units
of length2, and since the overall unit of the expression is an energy,
we see that Kb has units of energy with typical values in the range
10–20 kBT . We will describe how the bending rigidity is measured in
Section 11.3.1.

2w0

2w

equilibrium bilayer thickness

deformed bilayer

Figure 11.21: Energy penalty for
bilayer thickness changes. Springs are
used to illustrate the idea that there is
an energy cost to change the thickness
of a lipid bilayer from its equilibrium
value, 2w0.

There Is a Free-Energy Penalty for Changing the Thickness of a Lipid
Bilayer

Yet another type of membrane springiness results from changing the
bilayer thickness as indicated schematically in Figure 11.21. If we con-
sider an equilibrium thickness 2w0 and the thickness is changed to 2w
(for mathematical convenience, we define w as the half-width of the
membrane), then the contribution of such thickness variations to the
overall free energy budget is given by

Gthickness[w(x, y)] = Kt

2

∫
da

[
w(x, y)−w0

w0

]2
, (11.8)
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Figure 11.20: Schematic of the energy
penalty associated with average
bending of the bilayer. (A) The
undeformed state of the membrane.
(B) A membrane that has suffered a
bending deformation resulting in
relative tilt of neighboring lipid
molecules.
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There Is a Free-Energy Penalty Associated with Bending a Lipid Bilayer

When a patch of lipid bilayer is bent away from its flat zero-energy
state (assuming there is no spontaneous curvature), there is a rear-
rangement of both the headgroups and the tails of the lipids within
the bilayer. Loosely speaking, we can think of these rearrangements
as being equivalent to stretching and compressing springs as shown
in Figure 11.20. More precisely, the free energy of bending can be
written in terms of the curvature as

Gbend[h(x, y)] = Kb
2

∫
da [κ1(x, y) + κ2(x, y)]2, (11.7)

a model sometimes known as the Helfrich–Canham–Evans free energy.
We have introduced the notations κ1 and κ2 to represent the princi-
pal curvatures of the surface at the point of interest and they may be
thought of as the outcome of diagonalizing the matrix κij that appears
in Equation 11.3. The mean curvature is defined as κ̄ = (κ1 + κ2)/2.
What this equation really instructs us to do is to visit every point
on the surface, find its curvature, and compute κ̄2 at that point, and
then to add up the energy over all points on the membrane.

Note that the bending free energy introduced in Equation 11.7
involves a new material parameter, Kb, the bending rigidity. Since
the units of κ are 1/length (as can be seen from the definition of the
curvature as the second derivative, length/length2) and da has units
of length2, and since the overall unit of the expression is an energy,
we see that Kb has units of energy with typical values in the range
10–20 kBT . We will describe how the bending rigidity is measured in
Section 11.3.1.
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Figure 11.21: Energy penalty for
bilayer thickness changes. Springs are
used to illustrate the idea that there is
an energy cost to change the thickness
of a lipid bilayer from its equilibrium
value, 2w0.

There Is a Free-Energy Penalty for Changing the Thickness of a Lipid
Bilayer

Yet another type of membrane springiness results from changing the
bilayer thickness as indicated schematically in Figure 11.21. If we con-
sider an equilibrium thickness 2w0 and the thickness is changed to 2w
(for mathematical convenience, we define w as the half-width of the
membrane), then the contribution of such thickness variations to the
overall free energy budget is given by

Gthickness[w(x, y)] = Kt

2

∫
da

[
w(x, y)−w0

w0

]2
, (11.8)
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reveal the relation between the applied tension and the current flow-
ing through the channel. One of the key observables to emerge from
these experiments is the open probability popen as a function of the
applied pressure as shown in Figure 11.43. This figure goes beyond
the version shown in Figure 7.5 (p. 287) by illustrating the intriguing
way in which the open probability depends upon the lengths of the
lipid tails of the membrane in which the channel lives. The fact that
the open probability depends upon lipid-tail length provides a clue
as to the importance of membrane deformation in dictating part of
the free-energy budget associated with channel gating. As a result, we
now consider how membrane proteins deform the lipid bilayer that
surrounds them.

1.0
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Figure 11.43: Ion channel open
probability. The graph shows the open
probability as a function of the pressure
for the mechanosensitive channel,
MscL. Different curves correspond to
different length tails for the lipids in the
surrounding membrane. The particular
cases are tails with 16, 18, and 20
carbon atoms in their backbone.
(Adapted from E. Perozo et al., Nat.
Struct. Biol. 9:696, 2002.)

11.6.2 Elastic Deformations of Membranes Produced by Proteins

Proteins Induce Elastic Deformations in the Surrounding Membrane

As argued at the beginning of this chapter, the liveliness of mem-
branes owes much to the activity of their proteins. The hypothesis
we explore now is that the energetics of the surrounding membrane
contributes to the functioning of a wide class of membrane proteins.
Our examples of choice are the mechanosensitive proteins because
of the availability of quantitative data such as those shown in Fig-
ure 11.43. This class of ion channels is gated by the presence of
tension in the surrounding membrane. However, more generally, any
membrane protein that undergoes some conformational change that
alters the shape that it presents to the surrounding membrane will
deform that membrane. The interesting idea explored in this section
is that this membrane deformation feeds back to the protein and can
alter its conformational preference.

To see how membrane deformation might couple to protein func-
tion, we begin by considering a membrane protein like that shown
schematically in Figure 11.44(A). For mathematical convenience, we
consider the one-dimensional geometry shown in Figure 11.44(B),
where we define the functions h+(x) and h−(x) that characterize the
height of the upper and lower leaflets of the lipid bilayer. The basis
for this figure is the idea that, like their lipid partners, membrane

h+(x )

hydrophobic
region of
protein

h–(x )

x
(A) (B)

Figure 11.44: Protein-induced membrane deformation. (A) Protein in a membrane. (B) Schematic showing the nature of the
deformations in the vicinity of a membrane protein. The heights of the upper and lower leaflets of the bilayer are defined by the
two fields, h+(x) and h−(x). The lipids near the protein are deformed as a result of a hydrophobic matching to the hydrophobic
patches of the protein. The lipid schematic ignores the fact that the lipids are fluctuating, resulting in many different
conformations.

468 Chapter 11 BIOLOGICAL MEMBRANES

Membrane proteins can 
locally deform the 

thickness of lipid bilayer

hydrophobic region 
of protein

Kt ⇡ 60kBT/nm
2

Et =
Kt

2

Z
dA

✓
w � w0

w0

◆2



27

Osmotic pressure in cells
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If extracellular solution has 
different concentration of ions 
from the interior of cells, then 
the resulting flow of water can 

cause the cell to shrink or 
swell and even burst.
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Cells use ion channels and ion pumps 
to regulate concentration of ions and 

therefore also the cell volume.

(Note: cell membrane is impermeable 
for charged particles)
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Area difference between lipid layers
Length difference for 2D example on the left

ters of the system, we first present expressions for the
relevant contributions to the system’s mechanical energy.
We then describe the rather unique shape behavior of lipid
vesicles. The emphasis will be on providing a qualitative
understanding of the dependence of shape on the param-
eters of the system. Therefore, we avoid any description of
the formalisms that are used in theoretical determina-
tions of vesicle shape (Svetina and Žekš, 1996; Seifert,
1997). In the second part we discuss some biologically
important vesicle phenomena to which lipid vesicle shape
behavior can be related. Special attention is given to the
relationship between vesicle shape transformations and
vesicle fission and fusion processes, and to the phenome-
non of cellular polarity. We also discuss the functional
significance of the shape of the red blood cell. We conclude
by suggesting that some biological processes may have
their origin in the general shape behavior of closed lamel-
lar membranes.

MECHANICAL BASIS OF LIPID VESICLE
SHAPE FORMATION

Lipid vesicles form when lipid molecules, because of
their amphiphilic nature and geometry, associate in an
aqueous environment to form membranes. Typical of
these lipid membranes are phospholipid membranes. In
these membranes an adequate contact of phospholipid
molecules with water is established by arrangement of
their polar heads at the membrane surface, and by their
hydrophobic tails oriented in the direction of the mem-
brane interior. The thermodynamically stable bilayer
membrane is obtained by the hydrophobic side of one such
monolayer being covered by the hydrophobic side of an-
other, oppositely-oriented monolayer. A piece of a bilayer
membrane would have the hydrophobic parts of the mol-
ecules at its edges still in contact with the water. How-
ever, because the membrane of a vesicle forms a closed
surface, there are no edges; consequently, vesicles are
more stable than membrane pieces. In an unilamellar
phospholipid vesicle, a single bilayer membrane separates
the external and internal water solutions (Fig. 1). There
are different prescribed conditions for the spontaneous
formation of phospholipid vesicles from a mixing of water
and phospholipids (Lasic, 1993). The resulting vesicles
may thus have different sizes: !10 nm for small phospho-
lipid vesicles (SPVs), !0.1 "m for large phospholipid ves-
icles (LPVs), and !10 "m for giant phospholipid vesicles
(GPVs). The size influences vesicle behavior by phenom-
ena that depend, for example, on both vesicle volume and
membrane area, as is the case with the characteristic time
for transmembrane diffusion transport, or on the ratio
between the membrane thickness (!5 nm) and vesicle
diameter. Among vesicles of different sizes, GPVs deserve
special attention because their dimensions are compara-
ble to the dimensions of cells. As such, they can also be
visualized by an optical microscope.

For a given area of the vesicle membrane (A), the vesicle
volume (V), being practically equal to the volume of the
internal solution, can have any value between nothing and
the volume of a sphere with radius Rs # (A/4$)1/2. Vesicle
volume may be the result of the process of vesicle forma-
tion and the processes occurring during its subsequent
history. It can also be monitored by the osmotic state of
the inside and outside solutions. For any vesicle volume
smaller than the volume of the sphere, the vesicle is flac-
cid and can assume an infinite number of shapes. How-

ever, experimental determination of shapes indicates that
they are limited to certain distinct shape types. In Figure
2 are the cross-sections of some characteristic GPV shapes
that have been obtained from optical microscopy. Two
characteristic oblate shapes are the disc shapes (shape 4)
and cup shapes (shapes 1–3), and two characteristic pro-
late shapes are the cigar shapes (shape 5) and pear shapes
(shapes 6–8). Shapes 9–12 are characteristic of shapes
with lower volumes, and shapes 13–16 are those with
narrow necks. It can be seen that phospholipid vesicle
shapes exhibit some symmetry characteristics, which in-
dicates that their formation obeys certain rules. It can also
be deduced from Figure 2 that different shapes can exist
at the same vesicle volume. This implies that there are
systemic properties other than the vesicle volume that
influence vesicle shape.

Elastic Properties of a Membrane Described as
an Elastic Sheet

The outside and inside vesicle solutions are liquids;
therefore, the formation of vesicle shapes can be, in the
absence of external forces, related only to the mechanical
properties of their membranes (Evans and Skalak, 1980).
Because of their relatively small thickness, phospholipid
membranes as a mechanical system resemble a thin elas-

Fig. 1. A schematic representation of a phospholipid vesicle. a: The
cross-section of a spherical vesicle. b: The axial cross-section of a
vesicle with an axisymmetric shape exhibiting a protuberance and re-
sembling a pear. Rs is the radius of the sphere and R m is the meridianal
principal radius. The two examples of Rm indicate that the membrane
principal radii are defined to be positive at the convex parts of the
membrane and negative at its concave parts. In both vesicles the struc-
tural features of phospholipid membranes are shown schematically for
the indicated membrane section. Phospholipid molecules are shown as
composed of heads (circles) and two tails. Dashed lines represent neu-
tral surfaces of the membrane monolayers, with their positions defined
through the requirement of independent lateral expansion and bending
deformational modes. The distance between the neutral surfaces is
denoted by h. The arrows in the section of vesicle b indicate the relative
shifts of the positions of phospholipid molecules in the two monolayers
when the protuberance forms.

216 SVETINA AND ŽEKŠ
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Total elastic energy for cells (vesicles)
Shape of cells (vesicles) can be obtained by 

minimizing the total elastic energy
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Minimal model: minimization of 
bending energy for lipid vesicles

Find the shape of vesicles that 
minimize bending energy by 

constraining the volume to v<1.

U. Seifert et al., PRA 44, 1182 (1991)

compressed, but rather assumes a nonspherical shape.
This happens because the energy cost due to membrane
bending is in general much smaller than the energy cost
needed for membrane lateral compression.

When a vesicle is not spherical, its membrane is curved
differently at different locations on the vesicle surface.
The two principal curvatures (C1 ! 1/R1 and C2 ! 1/R2,
with R1 and R2 being the principal radii) thus differ and
vary over the vesicle surface (Fig. 1b). The vesicle bending
energy, which can be expressed in terms of principal cur-
vatures, is therefore obtained by integrating the local
bending contributions over the whole membrane area. For
a thin sheet with isotropic elastic properties, this integra-
tion is the sum of the local bending term (Wb) and the
Gaussian bending term (WG) (Helfrich, 1973):

Wb " G ! Wb " WG !
1
2kc!(C1 " C2 # C0)2dA

" kG!C1C2dA [2]

where kc is the local bending modulus, kG the Gaussian
bending modulus, and C0 the spontaneous curvature. The
nonzero spontaneous curvature C0 reflects the possible
intrinsic property of the membrane that would cause its
unsupported piece to assume mechanical equilibrium at a
curved membrane conformation.

Spontaneous Curvature Model
of Vesicle Shapes

It has been proposed that the shapes of vesicular struc-
tures, such as phospholipid vesicles, correspond to the
smallest possible value of the membrane bending energy
(Canham, 1970). Such shapes can be predicted by a math-
ematical procedure (Deuling and Helfrich, 1976) in which
the shape with the minimum energy is found essentially
by scanning theoretically over all possible shapes. In the
minimization procedure, the only role is played by the first
term in Eq. [2], Wb, because for a vesicle of given topology
the Gaussian contribution to the bending energy has a
constant value. However, it has to be kept in mind that
this value can be finite (WG ! 4$kG for the spherical
topology) and therefore it must be taken into consider-
ation in processes in which the number of vesicles is
changing, as, for example, in vesicle fission and fusion
processes. In the flaccid vesicle the membrane area is
scarcely expanded. It is therefore possible for flaccid ves-
icles to assume that A % A0, and to obtain their shapes by
minimizing the membrane local bending energy Wb under
the constraint of constant membrane area. It can also be
recognized that the minimum energy shape does not de-
pend on the value of the bending constant kc which is just
a constant factor in the varied local bending energy term.
The shapes are also usually determined under the con-
straint of a fixed vesicle volume. Therefore, in their deter-
mination of a catalogue of vesicle shapes by minimizing
Eq. [2], Deuling and Helfrich (1976) could express their
results in terms of the reduced volume v ! 3V/4$Rs

3, with
Rs the radius of the sphere now corresponding to the area
of the unextended membrane (A0/4$)1/2, and the reduced
spontaneous curvature c0 ! C0Rs. The shapes of vesicles

in this, the so-called “spontaneous curvature” model, thus
depend only on the values of v and c0. In Figure 3 the
bending energies are shown, expressed in terms of the
bending energy of the sphere, wb ! Wb/8$kc, together with
some calculated shape cross-sections of vesicles, with the
smallest possible bending energy as a function of the re-
duced volume v for the value of the reduced spontaneous
curvature c0 ! 0.

Nonlocal Bending Energy
In a more complete description of shapes of phospholipid

vesicles, the fact that phospholipid membranes are com-
posed of two monolayers has to be taken into consideration
(Fig. 1). The two monolayers of a phospholipid bilayer can,
in the first approximation, be considered as composition-
ally independent, because the transbilayer movement of
phospholipids is slow, with typical half-times for phospho-
lipid equilibrium exchange being on the order of hours or
days (Wimley and Thompson, 1991). As already stated,
because of the hydrophobic effect, the two monolayers are
in a contact. Thus their positions are geometrically related
in that they are aligned in a parallel manner. By assuming
that the distance between the neutral surfaces of the two
monolayers is the same all over the membrane surface,
the area of the neutral surface of the outer layer (A2) is
larger than the area of the neutral surface of the inner
layer (A1) by the integral of the sum of the membrane
principal curvatures over the whole surface, multiplied by
the distance between the two neutral surfaces (h). The
difference between the areas of the two monolayers is thus

&A ! A2 # A1 ! h!(C1 " C2)dA. [3]

Integration is over the membrane area (A % A1 % A2) of
the vesicle.

Fig. 3. Membrane local bending energy in units of the bending en-
ergy of the sphere (wb ! Wb/8$kc) as a function of the reduced vesicle
volume for minimum energy shapes in the spontaneous curvature model
(adapted from Svetina and Žekš, 1989). The value of the spontaneous
curvature c0 is taken to be zero. The three curves represent cigar-, disc-,
and cup-shape classes. Typical examples of the corresponding shapes
are presented.
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Bilayer couple model of vesicles

tic sheet. Thin sheets can be treated elastically in terms of
independent elastic deformational modes, i.e., their in-
plane elasticity and bending. The in-plane elasticity of
phospholipid membranes is specific, in that phospholipid
molecules can exchange their lateral positions and can
therefore move freely within the plane of the membrane.
Consequently, phospholipid membranes behave as two-
dimensional liquids. As such they do not exhibit in-plane
shear and are laterally isotropic. However, membranes
exhibit compressibility properties. When a membrane is
laterally compressed or expanded, its elastic energy in-
creases in a way that can be approximated by the area
expansion energy term

WA !
K

2A0
(A " A0)2 [1]

where K is the area expansivity modulus (reciprocal of the
compressibility modulus), and A0 the equilibrium area of
the membrane.

The area expansion energy term (Eq. [1]) is particularly
important when a vesicle is in a swollen state, i.e., its
volume is larger than the volume of the sphere with an
area of the unextended membrane A0. In the opposite
case, when vesicle volume is smaller than this volume, the
membrane does not respond correspondingly by being

Fig. 2. A series of vesicle shapes as observed by phase contrast
microscopy. This microscopy senses the parts of vesicles in which the
path of the optical beam through the membrane is the longest; therefore,
the equatorial contours of vesicles are seen representing the equatorial
cross-sections of vesicles. In the first row are three shapes belonging to
the cup-shape class (1–3) and a shape belonging to the disc-shape class
(4). In the second row are shapes belonging to the cigar-shape (5) and
pear-shape (6–8) classes. In the third row are some examples of shapes
with a relatively small vesicle volume/membrane area ratio. Shape 9 is
termed a codocyte, shape 10 is a torocyte, shape 11 is a starfish, and

shape 12 is a worm shape. The fourth row shows shapes characterized
by narrow necks connecting nearly spherical vesicle parts. Shape 13 has
two invaginated spheres within a large sphere. Shape 14 is composed of
a large sphere and two small evaginated spheres. Shape 15 has a small
sphere in between two large spheres, whereas shape 16 has (in addition
to a large mother sphere) five small spheres arranged in a row and a
single small sphere connected to it at another position. Data are from:
shapes 1–4, 13, and 14 (Käs and Sackmann, 1992), 5–8 (Käs et al.,
1993), 9 and 16 (Svetina et al., 2001), 10–12 (J. Majhenc, unpublished
data), and 14 (Farge and Devaux, 1992).
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are different. The shape classes can be defined as the
domains within the v-!a phase diagram where shapes of
the same symmetry are obtained by continuous shape
transformations caused by continuously varying parame-
ters v and !a (Svetina and Žekš, 1989; Seifert et al., 1991).
In Figure 4 some regions in the v-!a phase diagram are
presented in which, in the strict bilayer couple model, the
shapes of some shape classes have the lowest values of the
local bending energy. To date, the shape classes have been
well characterized primarily for the v and !a values in
regions that are not too far from the point representing
the sphere (!a " 1, v " 1). For smaller reduced volumes v,
only some types of shapes have been characterized theo-
retically (Wintz et al., 1996). Some, but not all, shape
classes are comprised of axisymmetric shapes, including
those shapes that have also equatorial mirror symmetry
(e.g., disc and cigar shapes), and those without such sym-
metry (e.g., pear and cup shapes). In the intermediate
region between the oblate (lower !a) and prolate (higher
!a) shapes, there is the region of nonaxisymmetric shapes
(Heinrich et al., 1993).

In order to provide more detailed insight into the char-
acteristics of vesicle shape behavior, we present the strict
bilayer couple predictions for the shape behavior of the
cigar- and pear-shape classes. In Figure 5 the bending
energies of these two classes are given as a function of the
area difference !a for two values of the reduced volume v
(0.85 and 0.95). The axial cross-sections of the shapes of
the corresponding shape series are also presented in this
figure. For both considered reduced volumes the shape

with the absolute minimum energy belongs to the more
symmetric cigar class. However, at continuously increas-
ing !a, a point is reached where there is a continuous
transition to the pear shape, i.e., the shape with the lower
symmetry, because it has no equatorial mirror symmetry.
Another significant feature of the system is that limiting
shapes at higher !a boundaries of the pear-shape class are
composed of a large and a small (evaginated) sphere con-
nected by an infinitesimally small neck (Fig. 5, shapes 6
and 12).

We now show that for the finite values of the ratio kr/kc,
i.e., within the generalized bilayer couple model (Heinrich
et al., 1993; Miao et al., 1994), some of the stable shapes of
the strict bilayer couple model become unstable. For this
purpose we have to solve Eq. [7]. It is convenient and
instructive to do this graphically. In the same graph (Fig.
6) we plot the derivative of the local bending energy ob-
tained numerically from the results for the wb(!a) depen-
dence as presented in Figure 4 (in Fig. 6 the results are
shown only for v " 0.85), and the line with the slope –
2kr/kc, which intersects the abscissa at a point defined by
the chosen values of !a0 and c0. The solutions of Eq. [7]
are the points at which the derivative dwb(!a)/d!a and
the line intersect. In Figure 6 this procedure is performed
separately for three values of the ratio kr/kc. For kr/kc " 20
(Fig. 5c) there is a single intersection of the two curves and
thus a single solution of Eq. [7] at all relevant values of
!a0 and c0. At kr/kc " 6 (Fig. 5b) there are, within a
certain interval of the values of !a0 and c0, three solutions
of Eq. [7]. The intersections show that one of these solu-

Fig. 4. The v-!a phase diagram of vesicle shapes. The regions are
shown where in the strict bilayer couple model, the shapes with the
lowest local membrane bending energy belong to cup-, pear-, nonaxi-
symmetrical-, cigar-, and pear-shape classes (Svetina and Žekš, 1989,
1990; Heinrich et al., 1993). One set of class boundaries are the lines that
give for the limiting shapes the dependence of their reduced volume (v)
on their reduced area difference (!a). They are drawn by full lines and are
given for (A–F) some indicated limiting shapes. The limiting shapes
shown are compositions of spheres connected by infinitesimally narrow

necks. Limiting shapes at !a # 1 (A and B) have invaginated spheres.
Other sets of class boundaries are the symmetry-breaking lines defined
by the v and !a values where the shapes with an equatorial mirror
symmetry (disc and cigar shapes) become unstable. They are drawn by
dashed lines. Points 1–16 represent the positions in the v-!a phase
diagram of the shapes presented in Fig. 2. The positions of shapes 1–9
are obtained by comparison of the observed shapes with the corre-
sponding calculated shapes. Positions of other vesicles are estimated.
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Shape of red blood cells

G. Lim et al., PNAS 99, 16766 (2002)

whenever the membrane is not flat, a purely geometrical differ-
ence !A is induced between the areas of the inner and outer
leaflets. If !A is not identical to !A0, then elastic energy is

required to make them conform. The shape–free–energy func-
tional that incorporates these two effects is

FADE"S# !
"b

2 !
S

dA$2H # C0%
2 $

"!
2

%

AD2 $!A # !A0%
2, [1]

where D is the membrane thickness," A is the membrane area, "b
and "! are known bending elastic moduli, and the integral is over
the surface S of the closed vesicle. Eq. 1 defines the so-called
area–difference–elasticity (ADE) model (13). Mechanically sta-
ble shapes of fixed area and volume correspond to constrained
energy minima. For appropriately chosen parameters, the ADE
model does exhibit discocytic shapes, which become unstable
and transform to stomatocytic shapes when !A0 is decreased,
in accordance with the bilayer-couple hypothesis. However,

"More precisely, D is the separation between the neutral surfaces of the two bilayer leaflets
and is assumed independent of bending. The neutral surface of the leaflet is the plane
about which the net bending moment caused by the stress profile vanishes.

Fig. 1. Representative shapes from the main stomatocyte–discocyte–
echinocyte sequence, including (top to bottom) stomatocyte III, II, and I;
discocyte; and echinocyte I, II, and III. (Left) Laboratory images reproduced
with permission from refs. 31 (Copyright 1956, Grune & Stratton), 32 (Copy-
right 1980, Academic Press), 33 (Copyright 1975, Biophysical Society), and 2
(Copyright 1973, Springer). (Right) Minimum-energy shapes calculated from
our model with v0 & 0.950 and !a0 of (top to bottom in percentages) '0.858,
'0.358, 0.072, 0.143, 1.717, 1.788, and 2.003 with all other parameters re-
maining fixed.

Fig. 2. A sample of observed non-main-sequence shapes, including (top to
bottom) nonaxisymmetric discocyte, stomatocyte with triangular mouth, and
knizocyte. (Left) Laboratory images reproduced with permission from refs. 27
(Copyright 1981, Biophysical Society), 32 (Copyright 1980, Academic Press),
and 2 (Copyright 1973, Springer). (Right) Minimum-energy shapes calculated
from our model with values of v0 and !a0 of 0.989 and 0.215%, 0.950 and
'0.858%, and 1.000 and 1.144% (from top to bottom) with all other param-
eters remaining fixed.
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the surface S of the closed vesicle. Eq. 1 defines the so-called
area–difference–elasticity (ADE) model (13). Mechanically sta-
ble shapes of fixed area and volume correspond to constrained
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model does exhibit discocytic shapes, which become unstable
and transform to stomatocytic shapes when !A0 is decreased,
in accordance with the bilayer-couple hypothesis. However,
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about which the net bending moment caused by the stress profile vanishes.
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'0.358, 0.072, 0.143, 1.717, 1.788, and 2.003 with all other parameters re-
maining fixed.

Fig. 2. A sample of observed non-main-sequence shapes, including (top to
bottom) nonaxisymmetric discocyte, stomatocyte with triangular mouth, and
knizocyte. (Left) Laboratory images reproduced with permission from refs. 27
(Copyright 1981, Biophysical Society), 32 (Copyright 1980, Academic Press),
and 2 (Copyright 1973, Springer). (Right) Minimum-energy shapes calculated
from our model with values of v0 and !a0 of 0.989 and 0.215%, 0.950 and
'0.858%, and 1.000 and 1.144% (from top to bottom) with all other param-
eters remaining fixed.
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In the usual environment red blood cells 
have discocyte shape. Modifying cell 

environment can induce different shapes.
⇠ 7µm

anionic amphipaths, high salt, 
high pH, cholesterol enrichment

cationic amphipaths, low salt, 
low pH, cholesterol depletion
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Sickle-cell disease (anaemia)

Wikipedia

Sickle cells are much stiffer and 
cannot deform in order to pass 

through small capillaries. 

In low oxygen environment 
hemoglobin proteins inside sickle cells 

polymerize and form long strands. 
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Protein aggregation and diseases
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(A) Figure 14.22: Protein folding and
aggregation. A protein folded in
its native state sequesters
hydrophobic domains on the inside to
hide the hydrophobic core.
Denaturation disrupts the native
structure, exposing these
hydrophobic patches. (A) When the
protein is allowed to refold in very
dilute solution, the hydrophobic
patches within a single molecule
self-associate to reform the native
hydrophobic core. (B) At high
concentration, the hydrophobic patch
of one protein molecule may associate
with the hydrophobic patch of
another, triggering protein
aggregation rather than native
refolding. Hydrophobic residues are
shown in red, while hydrophilic
residues are shown in blue.concentrations of both substrate and enzyme are known and the

turnover rate of the enzyme has been accurately measured.

Protein Folding Is Facilitated by Chaperones

Another case where dilute in vitro biochemical experiments fail to
accurately represent the complexities of protein behavior inside cells
is in the study of protein folding. Many small proteins of rela-
tively simple structure can be purified and denatured with harsh
chemical agents such as urea or guanidinium chloride. When the
denaturing agents are removed, the proteins refold in vitro to their
original native structure. These kinds of experiments are successful
only when the protein concentration is several orders of magnitude
lower than the actual concentrations of protein inside of cells. In
more crowded solutions, denatured proteins tend to aggregate by
intermolecular association of their hydrophobic patches or domains,
preventing proper intramolecular association of these domains to
form the protein’s hydrophobic core as shown in Figure 14.22.

How do cells prevent aggregation of proteins as they are synthesized
from ribosomes in the highly crowded cytoplasmic environment? Spe-
cialized proteins called chaperones facilitate protein folding both by
increasing its rate and by preventing aggregation of partially folded
protein intermediates. These chaperones come in two flavors. Cham-
bered chaperones such as GroEL in bacteria and TRiC in eukaryotic
cells actually form a tiny private room in which an individual polypep-
tide chain is free to fold with no danger of random collision with
the hydrophobic patches of others. These chambered chaperones con-
sume ATP in the process of opening and closing the door to the room.
The second class of chaperone, exemplified by small heat-shock pro-
teins such as HSP70, tend not to require ATP for their action. These
bind to the hydrophobic domains of nascent proteins as they emerge
from the ribosome and prevent their aggregation until the entire
protein domain has been translated and is ready to fold.

14.3.2 Diffusion in Crowded Environments

As was illustrated in Figures 14.4 and 14.5, diffusion in crowded
environments is more subtle than its dilute-solution counterpart.
Theoretical responses to this challenging problem are usually all built

CROWDED DYNAMICS 567

hydrophilic 
amino acids
hydrophobic 
amino acids

R. Phillips et al., Physical 
Biology of the Cell

(A) In dilute solution misfolded proteins 
refold back into their native state.

(B) In concentrated solution misfolded proteins tend to form aggregates.
Cells have special proteins called chaperons, which assist proteins 

folding into their native state and thus prevent aggregation.

Protein aggregation is a cause of many 
diseases (Alzheimer’s, Parkinson’s, …)


