Deep Learning for Self-driving Car

Chenyi Chen
Background

- Design and test a new algorithm on a real car is:
 - Time consuming to set up everything
 - Not very safe
 - Less convenient
 - Most important: Prospect 12 is down!
- So, let’s try to use a racing game!
Background

- Let the deep learning vision algorithm drive in a racing game -- TORCS
Why TORCS? Not Need for Speed?

• Open source, so you can access the source code (most important)
• Widely used in artificial intelligence research community
• Good vehicle dynamics and mechanics model
• Easy to start with
• Run on Linux
Original Version: Basic Idea

• Mapping images to driving actions

Image sequences → Deep learning & computer vision method → Four actions of the car: left, right, accelerate, brake
Why deep learning?

How do we detect a stop sign? It’s all about feature!

Some Salient Features

"STOP"

It’s a STOP sign!!
Why deep learning?

How does computer vision algorithm work? It’s all about feature!
Why deep learning?

- We believe driving is also related with certain features
- Those features determine what action to take next
Why deep learning?

- Salient features can be automatically detected and processed by deep learning algorithm
- A mapping between features and actions is established during training
Why deep learning?

• ImageNet Classification Challenge
 • 1000 categories
 • 1.2 million training images
 • 50,000 validation images
 • 150,000 testing images
 • Top-5 error rate* of deep learning: 15.3%
 • Top-5 error rate of second best (which is non-deep learning): 26.2%

*Top-5 error rate: the fraction of test images for which the correct label is not among the five labels considered most probable by the model
Deep Convolutional Neural Network (CNN)

- The network structure that achieved the excellent performance in ImageNet Classification Challenge.
Communications between the TORCS and the AI Agent

- Memory Sharing

Diagram:
- TORCS emulator environment
- Shared memory
- AI agent deep learning algorithm
- Image sequences
 - Write
 - Read
- Control actions
 - Read
 - Write
1st step: driving without other vehicles

- Simplified scene
- No complicated motion (cause no other cars)
- Much easier task
- All the information needed for driving can be encoded in a single frame
Four Tracks Used as Training Set

- The images (x) and the corresponding driving controls (y) are recorded.
Six Tracks Used as Testing Set

- No overlap with the training set
What does the algorithm do?

• Process the image
• Output steering command based on image content
• Also output desired speed for current road condition
• Feedback the actual speed of the car, and let a speed controller to control the throttle/brake
Test track: Wheel 2
What’s next?

• Of course, drive in traffic
• Goal: stay on the track & avoid collision
• Problem: driving with and without other cars are two totally different problems
• Complicated motion is involved
• Challenging machine learning task
But this time, direct learning sucks!
Why?

• Millions of driving scenes, only four types of controls: left, right, accelerate, brake
• We human can do reasoning to differentiate diverse driving scenes and map them to the four actions, but machine learning cannot
• So it’s too difficult for machine learning algorithms to learn driving controls directly from complicated driving scenes
So, let’s make the task easier for our poor algorithm
How?

• Extract key parameters from driving scenes with deep learning
• Compute driving control (optimal control) based on those parameters
Direct Perception

• We can perceive the 3D shape, texture, material properties, without knowing the category of objects.
• But the category of objects also encapsulates about what can we do with the objects.
The perception of function

• Direct perception (affordances):
 Flat surface
 Horizontal
 Knee-high
 ...
 Sittable
 upon

• Mediated perception (Categorization)
 Flat surface
 Horizontal
 Knee-high
 ...
 Chair
 Sittable
 upon

Coutesy of Antonio Torralba
In Driving...

• Ordinary car detection: Find a car! It’s localized in the image by a red bounding box.

• Direct perception: The car is in the right lane; 16 meters ahead

• Which one is more helpful for our driving task?
In Our Specific Case...

• Let the deep learning algorithm tell us:
 • angle: the angle between the car’s heading and the tangent of the track;
 • toMiddle: the distance between the center of the car and the center line of the track;
 • min_dist: the distance between the car and the 1st preceding car;
 • lane: the lane of the 1st preceding car
Where to get the training data?

- Training data of the four parameters are collected from the game engine
- For real images, we can get the labels through crowdsourcing, e.g. Amazon Mechanical Turk
- Or measure such parameters with special equipment when collecting the data, e.g. Google Street View
- Or more crazily, train on simulation, test on real car!
Then there comes the demo
So, what’s next?
Wow, something real!
Wow, something real!

Here is a camera!
Q & A