Fundamentals of Machine Learning

Chenyi Chen
What’s learning?

• Example problem: face recognition

Prof. K Prof. F Prof. P Prof. V Chenyi

• Training data: a collection of images and labels (names)

Who is this guy?

• Evaluation criterion: correct labeling of new images
What’s learning?

• Example problem: scene classification

 road road sea mountain city

• a few labeled training images

What’s the label of this image?

• goal to label yet unseen image
Why learning?

• The world is very complicated
• We don’t know the exact model/mechanism between input and output
• Find an approximate (usually simplified) model between input and output through learning
• Principles of learning are “universal”
 – society (e.g., scientific community)
 – animal (e.g., human)
 – machine
A Taste of Machine Learning
Learning, biases, representation

"yes"

"yes"

"no"

?
Representation

- There are many ways of presenting the same information

- The choice of representation may determine whether the learning task is very easy or very difficult

01111110111001000000010000000100111110111011110011101111001

Tommi Jaakkola, MIT CSAIL
Representation

01111110011100100000001000000010011111111011110011110111110001
000111111000000110000011100000110011111101111100111111101111111
111111100000011000001100011111100000011110000011110001101110001

“yes”
“yes”
“no”

“yes”
“yes”
“no”
Hypothesis class

- Representation: examples are binary vectors of length \(d = 64 \)

\[
x = [111 \ldots 0001]^T =
\]

and labels \(y \in \{-1, 1\} \) ("no", "yes")

- The mapping from examples to labels is a "linear classifier"

\[
\hat{y} = \text{sign} (\theta \cdot x) = \text{sign} (\theta_1 x_1 + \ldots + \theta_d x_d)
\]

where \(\theta \) is a vector of parameters we have to learn from examples.

We want to minimize the difference between them!
Estimation

\[y \]

\[+1 \]

\[y_1 \]

\[+1 \]

\[y_2 \]

\[-1 \]

\[\ldots \]

- How do we adjust the parameters \(\theta \) based on the labeled examples?

\[
\hat{y} = \text{sign}(\theta \cdot x)
\]

For example, we can simply refine/update the parameters whenever we make a mistake:

\[
\theta_i \leftarrow \theta_i + y x_i, \quad i = 1, \ldots, d \quad \text{if prediction was wrong}
\]
Evaluation

- Does the simple mistake driven algorithm work?

(average classification error as a function of the number of examples and labels seen so far)
Model selection

- The simple linear classifier cannot solve all the problems (e.g., XOR)
Model selection

- The simple linear classifier cannot solve all the problems (e.g., XOR)
Model selection

- The simple linear classifier cannot solve all the problems (e.g., XOR)

- Can we rethink the approach to do even better?

 We can, for example, add “polynomial experts”

\[\hat{y} = \text{sign}(\theta_1 x_1 + \ldots + \theta_d x_d + \theta_{12} x_1 x_2 + \ldots) \]
Model selection cont’d

linear

2^{nd} order polynomial

4^{th} order polynomial

8^{th} order polynomial
Types of learning problems (not exhaustive)

- **Supervised** learning: explicit feedback in the form of examples and target labels
 - goal to make predictions based on examples (classify them, predict prices, etc)

- **Unsupervised** learning: only examples, no explicit feedback
 - goal to reveal structure in the observed data

- **Semi-supervised** learning: limited explicit feedback, mostly only examples
 - tries to improve predictions based on examples by making use of the additional “unlabeled” examples

- **Reinforcement** learning: delayed and partial feedback, no explicit guidance
 - goal to minimize the cost of a sequence of actions (policy)
Artificial Neural Network
Neural Networks

basic building blocks

\[z = \sum_{i} x_i w_i + b, \quad y = f(z) \]

where \(f \) is a activation function:

\[f(z) = \sigma(z) = \frac{1}{1 + \exp(-z)} \]

- sigmoid is bounded between 0 and 1
- monotonically increasing
- differentiation: \(\sigma'(z) = \sigma(z) \times (1 - \sigma(z)) \)
Neural Networks

\[z = \sum_{i} x_i w_i + b, \quad y = f(z) \]

where \(f \) is an activation function:

\[f(z) = \sigma(z) = \frac{1}{1 + \exp(-z)} \]

- sigmoid is bounded between 0 and 1
- monotonically increasing
- differentiation: \(\sigma'(z) = \sigma(z) \times (1 - \sigma(z)) \)
Neural Networks

representation

feed-forward

for each neuron in the next layer:

\[z_i^{(2)} = \sum_{j=1}^{n} w_{ij}^{(1)} x_j + b_i^{(1)}, \quad a_i^{(2)} = f(z_i^{(2)}) \]

\[z_1^{(2)} = w_{11}^{(1)} x_1 + w_{21}^{(1)} x_2 + w_{31}^{(1)} x_3 + b_1^{(1)}, \quad a_1^{(2)} = f(z_1^{(2)}) \]

compactly:

\[z^{(2)} = W^{(1)} x + b^{(1)}, \quad a^{(2)} = f(z^{(2)}) \]

\[z^{(3)} = W^{(2)} x + b^{(2)}, \quad a^{(3)} = f(z^{(3)}) \]

layer_1 layer_2 layer_3

globally models a function:

\[\hat{y} = h_{W,b}(x) \]

where \(W \) and \(b \) are model parameters
Fundamentals of Computer Vision

Chenyi Chen
What is Computer Vision?

- Input: images
- Output: information about the world
What is Computer Vision?

Example:

• What is in this image?
• Who is in this image?
• Where are they?
• What are they doing?
What is Computer Vision?

Other questions:
• What camera settings were used?
• Which pixels go with which objects?
• What is the scene description in 3D?
How Do We Represent Colors Digitally?

Common color models

- RGB
- CMY
- HLS
- HSV
- XYZ
- Others

Colors are additive

<table>
<thead>
<tr>
<th>R</th>
<th>G</th>
<th>B</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>Black</td>
</tr>
<tr>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>Red</td>
</tr>
<tr>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>Green</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
<td>Blue</td>
</tr>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>0.0</td>
<td>Yellow</td>
</tr>
<tr>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td>Magenta</td>
</tr>
<tr>
<td>0.0</td>
<td>1.0</td>
<td>1.0</td>
<td>Cyan</td>
</tr>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>White</td>
</tr>
<tr>
<td>0.5</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>0.5</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>0.5</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>0.3</td>
<td>0.1</td>
<td></td>
</tr>
</tbody>
</table>
Camera Projection
Camera Projection
Camera Projection
Dimensionality Reduction Machine (3D to 2D)

What have we lost?

3D world

2D image

Slide by A. Efros
Figures © Stephen E. Palmer, 2002
A Tale of Two Coordinate Systems

Two important coordinate systems:
1. *World* coordinate system
2. *Camera* coordinate system

"The World"
Geometric Transformations
What is the geometric relationship between these two images?
Image alignment

Why don’t these image line up exactly?
What is the geometric relationship between these two images?

Very important for creating mosaics!
2D image transformations

These transformations are a nested set of groups
- Closed under composition and inverse is a member

<table>
<thead>
<tr>
<th>Name</th>
<th>Matrix</th>
<th># D.O.F.</th>
<th>Preserves:</th>
<th>Icon</th>
</tr>
</thead>
<tbody>
<tr>
<td>translation</td>
<td>$\begin{bmatrix} I & t \end{bmatrix}_{2 \times 3}$</td>
<td>2</td>
<td>orientation + ⋯</td>
<td></td>
</tr>
<tr>
<td>rigid (Euclidean)</td>
<td>$\begin{bmatrix} R & t \end{bmatrix}_{2 \times 3}$</td>
<td>3</td>
<td>lengths + ⋯</td>
<td></td>
</tr>
<tr>
<td>similarity</td>
<td>$\begin{bmatrix} sR & t \end{bmatrix}_{2 \times 3}$</td>
<td>4</td>
<td>angles + ⋯</td>
<td></td>
</tr>
<tr>
<td>affine</td>
<td>$\begin{bmatrix} A \end{bmatrix}_{2 \times 3}$</td>
<td>6</td>
<td>parallelism + ⋯</td>
<td></td>
</tr>
<tr>
<td>projective</td>
<td>$\begin{bmatrix} \tilde{H} \end{bmatrix}_{3 \times 3}$</td>
<td>8</td>
<td>straight lines</td>
<td></td>
</tr>
</tbody>
</table>
Projective Transformations / Homographies

$H = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & 1 \end{bmatrix}$

Called a homography (or planar perspective map)
Image warping with homographies

image plane in front

black area where no pixel maps to
Homographies
A Quick Application: Lane Detection
Lane Detection
Lane Detection
Stereo Vision
Binocular Stereo Reconstruction

Recover dense 3D structure of a scene using two images from different viewpoints.
Binocular Stereo Reconstruction

Recover dense 3D structure of a scene using two images from different viewpoints

image 1

image 2

Dense depth map
Applications

Scene modeling
Segmentation
Human-computer interaction
Autonomous driving
View interpolation
etc.
Figure 1: Mercedes-Benz S-class vehicle with stereo camera system behind the wind shield.

Franke et al., “How Cars Learned to See”
Visual Odometry, Structure-from-Motion, 3D Street Scene Reconstruction
KITTI Datasets

- Stereo images
- Grayscale
- Color
- Rectified
- 1382*512
- 10 FPS
Visual Odometry

- Visual odometry computes the trajectory of the vehicle only based on image sequences (LIBVISO2)
Depth Map

- Disparity map is computed from grayscale stereo image pairs (LIBELAS)
- Depth map can be derived from disparity map and camera model
Lane Detection

- Projecting lane markers on the road (Caltech Lane Detector)
3D Street Scene Reconstruction
3D Street Scene Reconstruction

• Dense reconstruction on *run_70*
Reconstruction with Non-Stereo Images/Structure-from-Motion

- Triangulation: tracking a same point in three (or more) frames, its spatial position can be determined

Figure courtesy of Jianxiong Xiao
Sparse Reconstruction with Non-Stereo Images

- Sparse reconstruction on *run_70*
Sparse Reconstruction with Non-Stereo Images

- *run_1*
Sparse Reconstruction with Non-Stereo Images

- run_9
Other Demos for Structure-from-Motion

- https://www.youtube.com/watch?v=i7ierVkXYa8
- https://www.youtube.com/watch?v=vpTEobpYoTg
Other Demos for Structure-from-Motion
Other Demos for Structure-from-Motion
Deep Learning
Deep Learning

With massive amounts of computational power, machines can now recognize objects and translate speech in real time. Artificial intelligence is finally getting smart.
Convolutional Neural Networks
Convolutional Neural Networks

pooling:
- reduce the size of representations
- allow small translation invariance.

common pooling techniques:
 - max pooling
 - average pooling
Convolutional Neural Networks

A convolution network is just a combination of convolution layers, pooling layers, and fully connected layers.

(Figure from LeNet tutorial, http://deeplearning.net/tutorial/lenet.html)
Convolutional Neural Networks

details:

activation function: ReLU \(f(z) = \max(0, z) \)

local normal contrast: \[b^i_{x,y} = a^i_{x,y} / \left(k + \alpha \sum_{j=\max(0, i-n/2)}^{\min(N-1, i+n/2)} (a^j_{x,y})^2 \right)^\beta \]

normalize at the same spatial location over different feature maps

overlapping pooling: pooling size 3 with stride 2
Convolutional Neural Networks

reduce over-fitting:

training 1.2 million images for 60 million parameters

data augmentation:

- extracting random 224*224 patches from the 256*256 images and horizontal reflections. This results in an increase by a factor of 2048.

- altering the intensities of the RGB channels, object identity is invariant to the illumination. Add each RGB pixel in each training image by

\[
[p_1, p_2, p_3] [\alpha_1 \lambda_1, \alpha_2 \lambda_2, \alpha_3 \lambda_3]^T
\]

where \(p_i\) are the 3 - 1 eigenvectors and \(\lambda_i\) are eigen values of 3 - 3 covariance matrix of RGB pixels, \(\alpha_i\) are random numbers
Convolutional Neural Networks

reduce over-fitting:

dropout:
an efficient way to combining different model predictions.

- for each forward pass and each back propagation, randomly defunctions every neuron with probability 0.5. (setting the activation to zero)
- testing: half all the weights, and use all of the neurons to predict
Convolutional Neural Networks

filter visualization:

(filters learned)
The end of all the fundamentals