FORT MONMOUTH ECONOMIC REVITALIZATION AUTHORITY

Management of Empty aTaxis

by

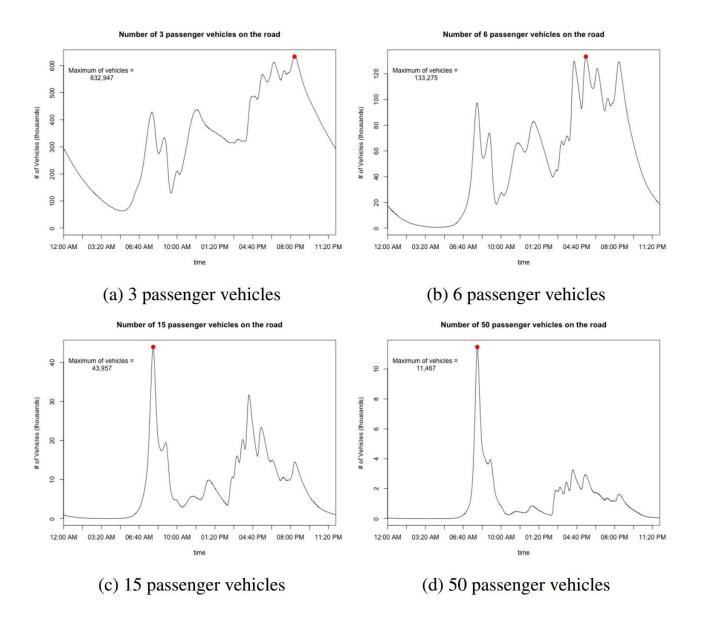
ALAIN L. KORNHAUSER, PHD

Professor, Operations Research & Financial Engineering


Director, Program in Transportation
Faculty Chair, PAVE
(Princeton Autonomous Vehicle Engineering)

Princeton

University


Key References

- S. Zhu'16 "Making Transportation Great Again" 2016 Senior Thesis
- S. Zhu'16 & A. Kornhauser*71
 Interplay Between Fleet-size, LoS
 and EmptyRepositioning

Basic Problem:

- Demand for aTaxis is NOT Symmetric (even in the long run)
- Thus empty aTaxis end up where no one else wants to get in.

- Thus they need to be repositioned
- If you have a big enough fleet, you may be able to wait a long time, but eventually, you'll need to reposition them.

FIGURE 2: Number of vehicles on the road as a function of time. The minimum number of vehicles needed to operate the system is the maximum of each vehicle type.

Early Morning Repositioning Costs

$$\min \sum_{i \in \mathscr{I}} \sum_{j \in \mathscr{J}} D_{ij} T_{ij}$$
subject to $T \ge 0$

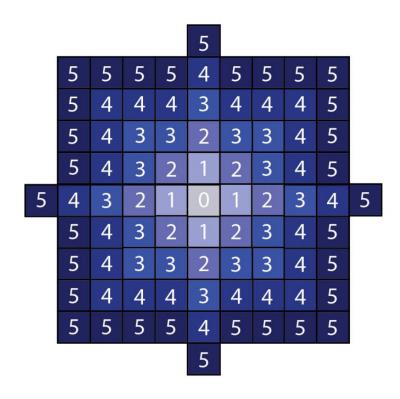
$$T_{i,i} = 0$$

$$\sum_{i \in \mathscr{I}} T_{ij} = A_j, \quad \forall j \in \mathscr{J}$$

$$\sum_{j \in \mathscr{J}} T_{ij} = P_i, \quad \forall i \in \mathscr{I}$$
(1)

where:

 D_{ij} is the distance between aTaxi stand i and aTaxi stand j, calculated as $1.2^*D_{cartesian}$.


 T_{ij} is trip matrix, or the number of vehicles moved from a Taxi stand i to a Taxi stand j.

 \mathcal{I} and \mathcal{I} are the set of active a Taxi stand.

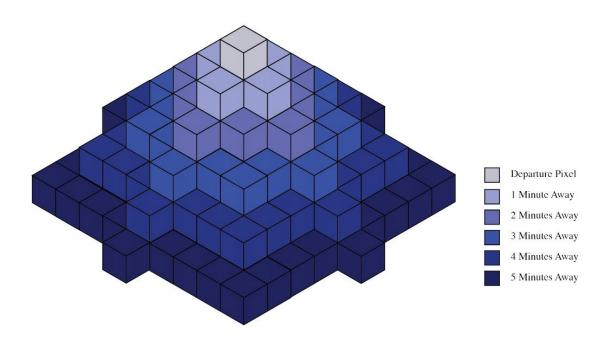
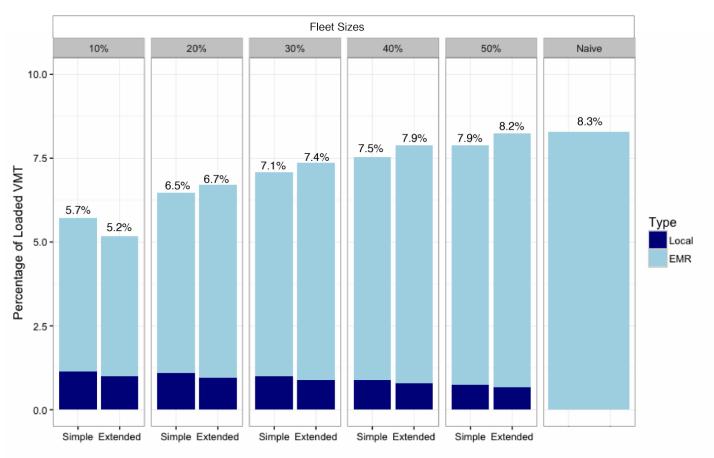
 P_i is the number of excess vehicles available at the aTaxi stand i.

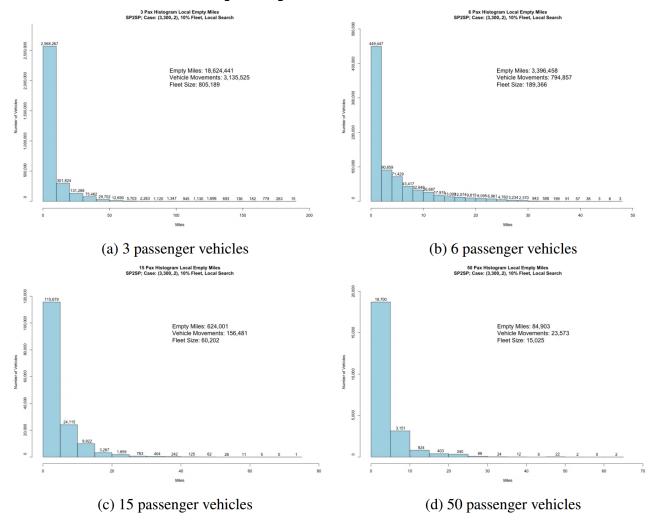
 A_j is the number of vehicles needed at pixel j.

Near-by Repositioning

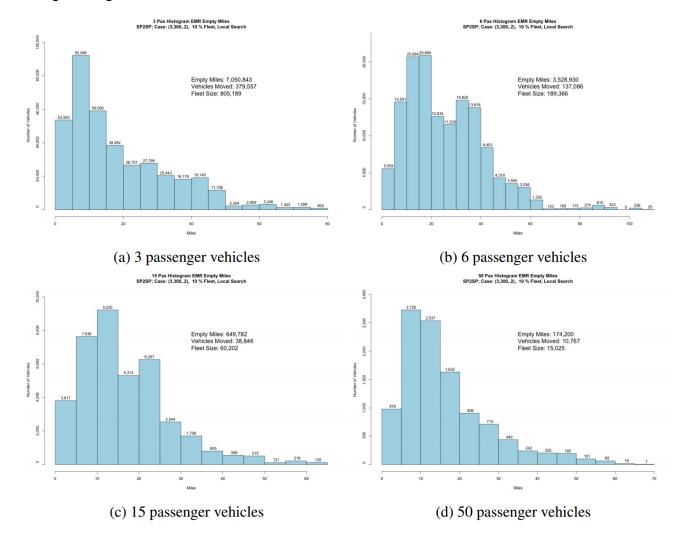
FIGURE 3: aTaxi stands that can be reached from the departure stand within 5 minutes a 30 mph travel

Near-by Repositioning


Figure 5.2: Voxelization of pixels in local repositioning

Repositioning v Fleet Size: NJ


IGURE 4: Comparison of empty vehicle repositioning cost, as a percentage of loaded vehicle niles traveled, for fleets of varying sizes

Empty Miles: NJ

FIGURE 5: Histograms of empty distances traveled by vehicle type for the 10% fleet size case in local repositioning.

Empty Miles: 10% Fleet Size case

FIGURE 6: Histograms of empty distances traveled by vehicle type for the 10% fleet size case in Early Morning Repositioning.

Summary

TABLE 3: Percentage of vehicle trips served within advertised level of service in each repositioning strategy

	Fleet Size									
	10%	20%	30%	40%	50%	Naive				
Simple Strategy	82.7	87.7	91.3	94.1	96.1	100				
Extended Search	86.7	89.6	92.0	94.1	95.9	100				

TABLE 4: Percentage of passengers served as wait time increases beyond advertised level of service for various fleet sizes

	Fleet Size						
	10%	20%	30%	40%	50%		
Within advertised	95.4	96.4	97.2	97.9	98.6		
Within advertised + 1 minute	95.7	96.3	97.5	98.2	98.8		
Within advertised + 5 minutes	96.8	97.8	98.5	99.0	99.5		
Within advertised + 10 minutes	97.8	98.7	99.2	99.6	99.8		

Discussion!

Thank You

alaink@princeton.edu

www.SmartDrivingCar.com

