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Class #12  

Part 2:  Planning and Analysis Tools of Transportation Demand and Investment  
  

Networks:  
 Definitions and notation:  

Directed graphs and Networks:  A directed graph, G  =  ( N, A ) consists of a set of N 

Nodes and a set of A arcs whose elements are ordered pairs of distinct nodes. A directed 

network is a directed graph whose nodes and/or arcs have associated numerical values.  

Undirected graphs and networks:  A directed graph with arcs having unordered pairs of 

distinct nodes.  

Tails and Heads: A directed arc (i,j) has two end points i and j.  We refer to i ( “A” node) 

as the tail node and j (“B” node) as the head node. Arc (i,j) emanates from i and terminates 

at j. Arc (i,j) is incident to nodes i and j.  It is outgoing from i and incoming to j.  Whenever 

an arc (i,j) ∈  A, then node j is adjacent to i.  

Degrees: The indegree of a node is the number on incoming arcs to that node and the 

outdegree is the number of its outgoing arcs.  The degree of a node is the sum of the in- 

and out- degrees.   

Adjacency list: The arc adjacency list, A(i)  of a node i is the set of arcs emanating from 

that node. A(i) =  { (i,j) ∈  A : j∈  N }. The node adjacency list, N(i)  is the set of nodes 

adjacent to that node; N(i) =  { j∈  N: (i,j) ∈  A }  

Multiarcrs and Loops:  Multiarcs are two or more arcs having the same tail and head 

nodes.  A loop is an arc whose tail node is the same as its head node.    

Subgraph:  A graph G’ = ( N’, A’) is a subgraph of G =  (N,A)  if N’ ⊆  N and A’ ⊆  A.  A 

graph G’ = ( N’, A’) is a spanning subgraph of G =  (N,A)  if N’ = N and A’ ⊆  A.  

Walk:  A walk in a directed graph is a subgraph of G containing a connected sequence of 

nodes (without any mention of arcs) or a connected sequence of arcs (without any mention 

of nodes).  

Directed Walk: A directed walk is an “oriented” version of a walk in that any two 

consecutive nodes on the walk must be a member of the set of arcs (i
k
, i

k+1
 ) ∈  A  .  

Path:
  
A path is a walk without any repetition of nodes.  We can partition the arcs of a path 

into two groups : forward arcs and backward arcs.  An arc (i,j) in the path is a forward arc 

if the path visits node i prior to visiting node j , and is a backward arc otherwise.  

Directed Path: A directed path is a directed walk without any repetition of nodes.  We can 

store a path easily by defining a predecessor index,  pred (j) for every node j in the path.   

Cycles:  A cycle is a path   i
1
 – i

2
  - i

3
  -  … i

r
   - i

1
  .  Cycles can be directed.  

Acyclic Graph:  A graph is acyclic if it contains no cycles.  

Connectivity: We will say that two nodes, i and j , are connected if the graph contains at 

least one path from node i to node j.  A graph is connected if every pair of nodes is 

connected; otherwise it is disconnected.    

Strong connectivity: A connected graph is strongly connected if it contains at least one 

directed path from every node to every other node.    

Cut:  A cut is a partition of the node set N into two parts, S and S = N – S.   Each cut 

defines a set of arcs consisting of those arcs that have one endpoint in S and the other in S.   

s – t Cut:  This cut has node s ∈  S ant t ∈  S.   

Tree:  A tree is a connected graph that contains no cycles.   

  A tree of n nodes contains exactly n – 1 arcs.  

 A tree has at least two leaf nodes ( nodes with degree 1)  

Every two nodes of a tree are connected by a unique path.  

Forest:  A graph that contains no cycles is a forest.  Alternatively, a forest is a collection 

of trees.  

Subtree:  A connected subgraph of a tree is a subtree.   



Rooted trees:  A rooted tree is a tree with a specially designated  node called a root.  

Rooted trees are viewed as hanging from the root.    

Directed-out-tree:   every path from node s is a directed path   

  

Network Flow Problems:  
 • Minimum cost flow problem:  

 

Minimize ∑
(i,j) ∈ A 

C
 ij

 X
 ij

 

   

 Subject to: ∑
{j:(i,j) ∈ A} 

X
 ij

 - ∑
{j:(j,i) ∈ A} 

X
 ji

  =  b( i )  

   (flow in = flow out ; mass balance)  

     

 l
 ij

 < X
 ij

 < u
 ij
  for all (i,j) ∈ A  

   (bounded flow)  

  

Can be rewritten in matrix notation as:  

                             Minimize C
 
X

 
 

  Subject to: N X  =  b  

   l
 
 < X

 
 < u

 
 

where N  is an n x m node – arc incidence matrix for which each column of N 
ij
 corresponds with the 

variable X
 ij

.  It has a  +1 in the i
th

 row, -1 in the j
th

 row; the rest of its entries are zero.  

  

 • Special cases:  

 
Shortest Path:  b(source) = 1 and b(sink) =  -1 all others are zero.  

  

Shortest Path Solution algorithms:   
Label setting algorithms  
  

 • Dijkstra’s Algorithm Magnanti Ch 4.4 pp 107 

Finds the shortest path from the source node s to all other nodes in the network with non-negative arc lengths.  

  

It maintains a distance label d(i) for each node i,  which is the upper bound on the shortest path length to node 

i. At any intermediate step, it divides the nodes into two groups: those that are permanently labeled, S , and 

those that are temporarily labeled, S. The distance to any node in S is the shortest from the source.  The basic 

idea of Dijkstra is to fan out from the source, s , and permanently label nodes in the order of their distance from 

node s. Initially s is assigned a distance of zero and all others a very large distance. It selects node i, with the 

minimum temporary label, makes it permanent and scans out from that node, using A(i) (the node-arc 

adjacency matrix) to update the distance labels of adjacent nodes.  The algorithm terminates when it has 

designated all nodes as permanent.  The algorithm relies on the fact that we can always designate the node with 

minimum temporary label as permanent.  

  

 

        

 begin  
 S : = empty;   S : = N;  

 d(i) : = ∞ for each node i ∈  N;  

 d(s) : = 0 and pred(s) : = 0;  

 while| S |< n do  

 begin   (node selection operation)  

  let i ∈  S be a node for which d(i) = min{ d(j) : = j ∈  S};  

  S : = S ∪  {i}  

  S : = S  -  {i}  



  for each (i,j) ∈  A(i) do  (distance update operation)  

if d(j) > d(i) + C
ij
  then   d(j) = d(i) + C

ij
   and   pred(j)  = i;  

  end;  

 end;  

   

Running Times:   

 1.  Node Selection:  performed n times.  Each time requires the scan of each temporarily labeled node: 

Worst case:   n + (n-1) + ( n-2) + … + 1 = O(n
2

)  

 2. Distance update: performed | A(i) | times for the node i. Overall this is performed ∑
 i ∈ N 

| A(i) |= m.  

Since each distance update operation requires O(1) time, this step requires only O(m) total time for 

updating all of the distance labels.    

  

Thus Dijkstra is of O(n
2

).  Bottleneck is node selection.  

  

 Dial’s Implementation:   Magnanti Ch 4.6 pp 113 

 Focuses on node selection: realizes that if C is length of longest link, then max distance is nC.  Then make nC+1 

buckets and The contents of bucket k are content(k).  Whenever we update the distance label of node i from d
1
 to d

2  

we move node i from contents (d
1
) to contents(d

2
).  This can be done with a doubly-linked list (each cell has two 

links, one to the preceding cell and the other to the succeeding cell.  Each “row” of the list 3 elements: data, llink 

(left link), rlink (right link)).  We then need to only scan up to the first non-empty bucket and make permanent all 

contents, then perform the update operation.   We use a doubly linked list to perform the operation.    

 

Since no link is larger than C, then  d(j) = d(i) + ci,j   <  d(i) + C    Consequently, we actually only need C + 1 buckets, 

and we can arrange then cyclically.  

  

Radix Heap Implementation: (one of many heap implementations)  Magnanti Ch 4.7 pp 115 and 4.8 pp 116, also 

Ahuja 

Use a Heap (or priority queue) data structure ( for example store nodes  of a heap as a rooted tree).  The Radix Heap 

implementation modifies Dial’s by using 1 + [log(nC)] buckets, numbered 0, 1, 2, 3, …, K .    

 • Each bucket has a range( );  range( k) is the range of bucket k.   

 • Temporary node i is stored in bucket k id d(i) ∈  range( k) .    

 • Permanent nodes are not stored.  Let content(k) denote the nodes in bucket k.    

 • The algorithm changes the ranges of the buckets dynamically, when it does it redistributes the nodes in the 

buckets.    

 • The range of the K
th 

bucket is [2
K-1

 , 2
K

 – 1] .  ( widths are 1,1, 2, 4, 8, 16,  ….).  Whenever the algorithm finds 

nodes with a minimum distance label are in a bucket with range larger than 1, it examines all nodes in the 

bucket to identify the one with minimum distance label.  Then the algorithm redistributes the bucket ranges 

and shifts each node in the bucket to the lower-indexed bucket. ( Since the radix heap contains K buckets, a 

node can shift at most K times and consequently, the algorithm will examine will examine any node at most K 

times.  Hence, the total number of examinations is O(nK)) .  

 

  

  

Label-Correcting algorithms Magnanti Ch 5  pp 133 

  

 Label-correcting algorithms maintain a distance d(j) label for every node j ∈  N .   At intermediate stages of 

computations, the distance label d(j) is an upper bound on the shortest path distance to the source node , and at 

termination it is the shortest path distance. Pred(j) are also saved at each stage.  The necessary conditions for 

optimality are   

  

d(j) <  d(i) + C
ij
            for all (i,j) ∈  A  

  

Algorithm label-correcting;  

begin  
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 d(s) : = 0 and pred(s) : = 0;  

 d(j) : = ∞ for each node j ∈  N – {s};  

while some arc( i,j ) satisfies d(j) >  d(i) + C
ij
     do   

begin   
d(j) : = d(i) + C

ij
   and   pred(j)  = i;  

  end;  

 end;  

  

  

The key to label-correcting algorithms is to process “some arc ( i,j )”!     

  

Dequeue Implementation    
 Suppose we maintain a LIST of arcs that might violate the optimality condition.  If LIST is empty, then we are 

optimal.  Otherwise we examine LIST to select an arc, say ( i,j ), violating it’s optimality condition. We remove the 

arc from LIST and update d(j) and pred(j) if the optimality condition is violated.  Any decrease in d(j) reduces the 

length of all paths passing through j. Therefore, if d(j) decreases, we must add arcs in A(j) to the set of LIST …  we 

add all arcs emanating from j !  This suggests that LIST actually contains a list of nodes with the property that if an 

arc ( i,j )  violates the optimality condition, then LIST must contain node j.  The question is where do we add the 

node to LIST, front or back?  The “Pape” implementation uses a dequeue data structure that permits us to add and 

delete elements form the front as well as the rear of the LIST.  The dequeue implementation always selects nodes 

from the front of the dequeue, but adds nodes to either the front or the rear.   If the node has been in the LIST before, 

then it adds it to the front; otherwise it adds it to the rear.  

Traffic Assignment:  
 • Constant link costs (linear networks):  

 • “All-or-nothing” assignments  

 • Multiple path assignments:  

 • K-shortest paths  

 • “Essentially-equal” shortest path  

 • Volume-dependent link costs  

 • $
Q
 =  $

0
 {1 + a (Q / Q

max
 )

b

}  

where  

$
Q
  =  link cost at traffic flow q  

$
0    

=  “zero flow” link cost  

Q   =  traffic flow (veh/hr.)  

     Q
max

 = practical capacity   

    a , b are parameters  

  

 • System-optimum assignments   

 

User-optimum assignments  

  


