DSOS/SDOS Programming: New Tools for Optimization over Nonnegative Polynomials

Amir Ali Ahmadi

Princeton University

Dept. of Operations Research and Financial Engineering (ORFE)

Joint work with: Anirudha Majumdar MIT, EECS

The Joint Mathematics Meeting of AMS and MAA January, 2015

Optimization over nonnegative polynomials

Defn. A polynomial $p(x) \coloneqq p(x_1, \dots, x_n)$ is nonnegative if $p(x) \ge 0, \forall x \in \mathbb{R}^n$.

Ex. Decide if the following polynomial is nonnegative:

$$p(x) = x_1^4 - 6x_1^3x_2 + 2x_1^3x_3 + 6x_1^2x_3^2 + 9x_1^2x_2^2 - 6x_1^2x_2x_3 -14x_1x_2x_3^2 + 4x_1x_3^3 + 5x_3^4 - 7x_2^2x_3^2 + 16x_2^4$$

Basic semialgebraic set:

$$\{ x \in \mathbb{R}^n | f_i(x) \ge 0, h_i(x) = 0 \\ \text{Ex. } 2x_1 + 5x_1^2x_2 - x_3 \ge 0 \\ 5 - x_1^3 + 2x_1x_3 = 0$$

PRINCETON UNIVERSITY **CORFE** Ubiquitous in computational mathematics!

1. Polynomial optimization

Many applications:

- Combinatorial optimization
- Option pricing with moment information
- The optimal power flow (OPF) problem
- Sensor network localization

2. Infeasibility certificates in discrete optimization

PARTITION

- •Input: A list of positive integers a_1, \ldots, a_n .
- •Question: Can you split them into to bags such that the sum in one equals the sum in the other?

n

$$a = \{5, 2, 1, 6, 3, 8, 5, 4, 1, 1, 10\}$$

4

- A YES answer is easily verifiable.
- How would you verify a NO answer?

$$p(x) = \sum_{i=1}^{n} (x_i^2 - 1)^2 + (a^T x)^2 - \epsilon \ge 0, \forall x$$

3. Stability of dynamical systems

Spread of epidemics

Robotics

Dynamics of prices

Equilibrium populations

Lyapunov's theorem for local stability

 $\dot{x} = f(x)$

Existence of Lyapunov function

$$\begin{split} V(x) &: \mathbb{R}^n \to \mathbb{R} \\ \dot{V}(x) &= \langle \frac{\partial V}{\partial x}, f(x) \rangle \end{split}$$

such that

V(x) > 0, $V(x) \le \beta \Rightarrow \dot{V}(x) < 0$

implies $\{x | V(x) \le \beta\}$ is in the region of attraction (ROA).

Global stability

$\begin{array}{ccc} V(x) & \mathrm{sos} & V(x) > 0 \\ -\dot{V}(x) & \mathrm{sos} \Rightarrow -\dot{V}(x) > 0 \Rightarrow \mathrm{GAS} \end{array}$ Example.

 $\dot{x_1} = -0.15x_1^7 + 200x_1^6x_2 - 10.5x_1^5x_2^2 - 807x_1^4x_2^3 + 14x_1^3x_2^4 + 600x_1^2x_2^5 - 3.5x_1x_2^6 + 9x_2^7$ $= -9x_1^7 - 3.5x_1^6x_2 - 600x_1^5x_2^2 + 14x_1^4x_2^3 + 807x_1^3x_2^4 - 10.5x_1^2x_2^5 - 200x_1x_2^6 - 0.15x_2^7$ $\dot{x_2}$ 1.5 0.5 × -0.5 -1 -1.5 Output of SDP solver: 0.5 1.5 1 $V = 0.02x_1^8 + 0.015x_1^7x_2 + 1.743x_1^6x_2^2 - 0.106x_1^5x_2^3 - 3.517x_1^4x_2^4$

 $+0.106x_1^3x_2^5 + 1.743x_1^2x_2^6 - 0.015x_1x_2^7 + 0.02x_2^8.$

How would you prove nonnegativity?

Ex. Decide if the following polynomial is nonnegative:

$$p(x) = x_1^4 - 6x_1^3x_2 + 2x_1^3x_3 + 6x_1^2x_3^2 + 9x_1^2x_2^2 - 6x_1^2x_2x_3 -14x_1x_2x_3^2 + 4x_1x_3^3 + 5x_3^4 - 7x_2^2x_3^2 + 16x_2^4$$

■Not so easy! (In fact, NP-hard for degree ≥ 4)

But what if I told you:

$$p(x) = (x_1^2 - 3x_1x_2 + x_1x_3 + 2x_3^2)^2 + (x_1x_3 - x_2x_3)^2 + (4x_2^2 - x_3^2)^2.$$

Natural question:

• Is it any easier to test for a sum of squares (SOS) decomposition?

- Yes! Can be reduced to a semidefinite program (SDP)!
- Can be solved to arbitrary accuracy in polynomial time.
- Extends to the "local" case (Positivstellensatz, etc.)

Local stability – SOS on the Acrobot

Controller designed by SOS

[Majumdar, AAA, Tedrake] UNIVERSITY **INCETON** [Best paper award - *IEEE Conf. on Robotics and Automation*, '13)

Practical limitations of SOS

• Scalability is a pain in the (_|_)

Thm: *p(x)* of degree *2d* is sos if and only if

$$p(x) = z^T Q z \quad Q \succeq 0$$

 $z = [1, x_1, x_2, \dots, x_n, x_1 x_2, \dots, x_n^d]^T$

• The size of the Gram matrix is:

$$\binom{n+d}{d} \times \binom{n+d}{d}$$

- Polynomial in *n* for fixed *d*, but grows quickly
 - The semidefinite constraint is expensive
- E.g., local stability analysis of a 20-state cubic vector field is typically an SDP with ~1.2M decision variables and ~200k constraints

Many interesting approaches to tackle this issue...

- Techniques for exploiting structure (e.g., symmetry and sparsity)
 - [Gatermann, Parrilo], [Vallentin], [de Klerk, Sotirov], ...
- Customized algorithms (e.g., first order or parallel methods)
 - [Bertsimas, Freund, Sun], [Nie, Wang], ...

Not totally clear a priori how to do this...

Consider, e.g., the following two sets:

- 1) All polynomials that are **sums of 4th powers of polynomials**
- 2) All polynomials that are **sums of 3 squares of polynomials** Both sets are clearly inside the SOS cone

- But linear optimization over either set is intractable!
- So set inclusion doesn't mean anything in terms of complexity
- We have to work a bit harder...

POS

dsos and sdsos

Defn. A polynomial p is *diagonally-dominant-sum-of-squares* (*dsos*) if it can be written as:

$$p = \sum_{i} \alpha_{i} m_{i}^{2} + \sum_{i,j} \beta_{ij}^{+} (m_{i} + m_{j})^{2} + \beta_{ij}^{-} (m_{i} - m_{j})^{2},$$

for some monomials m_i, m_j

fo

an

and some nonnegative constants $\alpha_i, \beta_{i,j}$.

Defn. A polynomial *p* is *scaled-diagonally-dominant-sum-of-squares* (*sdsos*) if it can be written as:

$$p = \sum_{i} \alpha_{i} m_{i}^{2} + \sum_{i,j} (\beta_{i}^{+} m_{i} + \gamma_{j}^{+} m_{j})^{2} + (\beta_{i}^{-} m_{i} - \gamma_{j}^{-} m_{j})^{2},$$

r some monomials m_{i}, m_{j}
id some constants $\alpha_{i} \ge 0, \beta_{i}, \gamma_{i}.$

Devious: $DSOS_{n,d} \subseteq SDSOS_{n,d} \subseteq SOS_{n,d} \subseteq POS_{n,d}$ 13

r-dsos and r-sdsos

Defn. A polynomial p is *r*-diagonally-dominant-sum-ofsquares (*r*-dsos) if $p \cdot (\sum_i x_i^2)^r$

is dsos.

Defn. A polynomial p is *r*-scaled-diagonally-dominant-sumof-squares (*r*-sdsos) if $p \cdot (\sum_i x_i^2)^r$

is sdsos.

Easy: $rDSOS_{n,d} \subseteq rSDSOS_{n,d} \subseteq POS_{n,d}, \forall r.$ $rDSOS_{n,d} \subseteq (r+1)DSOS_{n,d}, \forall r$

 $rSDSOS_{n,d} \subseteq (r+1)SDSOS_{n,d}, \forall r.$

dd and sdd matrices

DAD is dd.

 $dd \Rightarrow sdd \Rightarrow psd$

Greshgorin's circle theorem

PRINCETON WORFE *Thanks to Pablo Parrilo for telling us about sdd matrices. ¹⁵

Optimization over these sets is an SDP, SOCP, LP !!

Two natural matrix programs: DDP and SDPP

 $\min\langle C, X \rangle$ LP: A(X) = bX diagonal&nonnegative $\min\langle C, X \rangle$ A(X) = b**DDP**: $X \, \mathrm{dd}$ $\min\langle C, X \rangle$ **SDDP:** A(X) = b $X \, \mathrm{sdd}$ $\min\langle C, X \rangle$ **SDP:** A(X) = b $X \succeq 0$

From matrices to polynomials

Thm. A polynomial *p* is *dsos*

$$p = \sum_{i} \alpha_{i} m_{i}^{2} + \sum_{i,j} \beta_{ij}^{+} (m_{i} + m_{j})^{2} + \beta_{ij}^{-} (m_{i} - m_{j})^{2},$$

if and only if
$$p(x) = z^{T}(x)Qz(x)$$
$$Q \quad dd$$

Thm. A polynomial *p* is *sdsos*

$$p = \sum_{i} \alpha_{i} m_{i}^{2} + \sum_{i,j} (\beta_{i}^{+} m_{i} + \gamma_{j}^{+} m_{j})^{2} + (\beta_{i}^{-} m_{i} - \gamma_{j}^{-} m_{j})^{2},$$

Q

 $p(x) = z^T(x)Qz(x)$ if and only if sdd

Optimization over r-dsos and r-dsos polynomials

- Can be done by LP and SOCP respectively!
- Commercial solvers such as CPLEX and GUROBI are very mature (very fast, deal with numerical issues)
- **iSOS:** add-on to **SPOTIess** (package by Megretski, Tobenkin, Permenter MIT)

https://github.com/spot-toolbox/spotless

How well does it do?!

- We show encouraging experiments from: Control, polynomial optimization, statistics, copositive programming, cominatorial optimization, options pricing, sparse PCA, etc.
- And we'll give Positivstellensatz results (converse results)

First observation: r-dsos can outperform sos

$$p(x_1, x_2, x_3) = x_1^4 x_2^2 + x_2^4 x_3^2 + x_3^4 x_1^2 - 3x_1^2 x_2^2 x_3^2$$

psd but not sos!

...but it's 1-dsos. (certificate of nonnegativity using LP)

A parametric family of polynomials

Maximum Clique

Can be reformulated (via Motzkin-Straus) as a copositive program → positivity of a quartic

Polynomial optimization problem in 12 variables

Upper bound on max clique:

- **dsos:** 6.0000
- **sdsos:** 6.0000
- **1-dsos:** 4.3333
- **1-sdsos:** 4.3333
- **2-dsos:** 3.8049
- **2-sdsos:** 3.6964
- sos: 3.2362

"Polya-based LP"

- Level 0: ∞
- → Level 1: ∞
- → Level 2: 6.0000
- r-dsos LP guaranteed to give exact value for r=(max clique)^2

Minimizing a form on the sphere

 $\min_{x\in\mathcal{S}^{n-1}}p$

 $\mathcal{D}(x)$

 degree=4; all coefficients
 PC: 3.4 GHz, present – generated randomly
 ^{16 Gb RAM}

n=10	Lower bound	Run time (secs)	n=15	Lower bound	Run time (secs)	n=20	Lower bound	Run time (secs)
SOS (sedumi)	-1.920	1.01	SOS (sedumi)	-3.263	165.3	SOS (sedumi)	-3.579	5749
SOS (mosek)	-1.920	0.184	SOS (mosek)	-3.263	5.537	SOS (mosek)	-3.579	79.06
sdsos	-5.046	0.152	sdsos	-10.433	0.444	sdsos	-17.333	1.935
dsos	-5.312	0.067	dsos	-10.957	0.370	dsos	-18.015	1.301
BARON	-175.4	0.35	BARON	-1079.9	0.62	BARON	-5287.9	3.69
n=30	Lower bound	Run time (secs)	n=40	Lower bound	Run time (secs)	n=50	Lower bound	Run time (secs)
SOS (sedumi)		∞	SOS (sedumi)		∞	SOS (sedumi)		∞
SOS (mosek)		∞	SOS (mosek)		∞	SOS (mosek)		∞
sdsos	-36.038	9.431	sdsos	-61.248	53.95	sdsos	-93.22	100.5
dsos	-36.850	8.256	dsos	-62.2954	26.02	dsos	-94.25	72.79
BARON	-28546.1							

Convex regression

Best convex polynomial fit of degree d

(sd)sos constraint in 40 variables:

$$y^T H(x) y$$
 (sd)sos

	d=2	Max Error	Run time (secs)
	SOS (mosek)	21.282	~1
	sdsos	33.918	~1
\mathbf{O}	dsos	35.108	~1

UNIVERSITY

d=4	Max Error	Run time (secs)
SOS (mosek)		∞
sdsos	12.936	231
dsos	14.859	150

Stabilizing the inverted N-link pendulum (2N states)

2N (states)	4	6	8	10	12
$ ho_{dsos}/ ho_{sos}$	0.38	0.45	0.13	0.12	0.09
$ ho_{sdsos}/ ho_{sos}$	0.88	0.84	0.81	0.79	0.79

Stabilizing ATLAS

 30 states 14 control inputs Cubic dynamics (way beyond reach of SOS techniques)

Stabilizing controller designed by SDSOS Optimization

[Majumdar, AAA, Tedrake]

Converse results 1&2

Thm. Any even positive definite form *p* is r-dsos for some *r*.

- Hence proof of positivity can always be found with LP
- Proof follows from a result of Polya (1928) on Hilbert's 17th problem
- Even forms include, e.g., **copositive programming**!

Thm. Any positive definite **bivariate** form *p* is *r*-sdsos for some *r*.

- Proof follows from a result of **Reznick (1995)**
 - p.//x//^r will always become a sum of powers of linear forms for sufficiently large r.

Converse result 3 & Polynomial Optimization

Thm. For any positive definite form *p*, there exists an integer *r* and a **polynomial** *q* **of degree** *r* such that

q is dsos and pq is dsos.

- Search for *q* is an LP
- Such a q is a certificate of nonnegativity of p
- Proof follows from a result of Habicht (1940) on Hilbert's 17th problem

$\min_{x} p(x)$
$f_i(x) \le 0$
$h_i(x) = 0$

 Similar to the Lasserre/Parrilo SDP hierarchies, polynomial optimization can be solved to global optimality using hierarchies of LP and SOCP coming from dsos and sdsos.

Ongoing directions...

Move towards real-time algebraic optimization

e.g., barrier certificates[Prajna, Jadbabaie, Pappas]

(w/ A. Majumdar, MIT)

VERSITY

Iterative DSOS via

- Column generation
- Cholesky change of basis

(w/S. Dash, IBM)

Main messages...

- Inner approximations to SOS cone Move away from SDP towards LP and SOCP
- Orders of magnitude more scalable
 - Largest we have solved: degree-4 in **70 variables**.
- Many theoretical guarantees still go through!
- This can be used anywhere SOS is used!

Want to know more? aaa.princeton.edu mit.edu/~anirudha/