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Optimization over nonnegative polynomials

Ex. Decide if the following polynomial is nonnegative:

Ex.

Basic semialgebraic set:

Ubiquitous in computational mathematics!



Application 1: verification of dynamical systems

Search for functions 
satisfying certain 

nonnegativity constraints

Lyapunov 
Theory

Properties of interest:
• Stability of equilibrium points
• Boundedness of trajectories
• Invariance of sets
• Collision avoidance
• …  

E.g. - existence of a Lyapunov function
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• Shape-constrained regression; e.g., monotone regression

2: Statistics and Machine Learning

(From [Gupta et 
al.,’15])
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Imposing monotonicity 
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How to prove nonnegativity?

Nonnegative

SOS
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Local stability – SOS on the Acrobot

[Majumdar, AAA, Tedrake ]
(Best paper award - IEEE Conf. on Robotics and Automation)

Swing-up:

Balance:

Controller 
designed by SOS

(4-state system)
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Practical limitations of SOS

• Scalability is a nontrivial challenge!

Thm: p(x) of degree 2d is sos if and only if

• The size of the Gram matrix is:

• Polynomial in n for fixed d, but grows quickly

• The semidefinite constraint is expensive

• E.g., local stability analysis of a 20-state cubic vector field is typically 
an SDP with ~1.2M decision variables and ~200k constraints
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Simple idea…

• Let’s not work with SOS…

• Give other sufficient conditions for nonnegativity that are 
perhaps stronger than SOS, but hopefully cheaper

[AAA, Majumdar]
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Not any set inside SOS would work…

1) All polynomials that are sums of 4th powers of polynomials

2) All polynomials that are sums of 3 squares of polynomials

Both sets are clearly inside the SOS cone

Consider, e.g., the following two sets:

• But linear optimization over either set is intractable!

• So set inclusion doesn’t mean anything in terms of complexity

• We have to work a bit harder…
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dsos and sdsos

Defn. A polynomial p is diagonally-dominant-sum-of-squares
(dsos) if it can be written as:

for some monomials 
and nonnegative scalars

Defn. A polynomial p is scaled-diagonally-dominant-sum-of-
squares (sdsos) if it can be written as:

for some monomials 
and scalars

Obvious:
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r-dsos and r-sdsos

Defn. A polynomial p is r-diagonally-dominant-sum-of-
squares (r-dsos) if 

is dsos.

Defn. A polynomial p is r-scaled-diagonally-dominant-sum-
of-squares (r-sdsos) if

is sdsos.

Allows us to develop a hierarchy of relaxations…
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dd and sdd matrices

Defn. A symmetric matrix A is diagonally dominant (dd) if

Defn*. A symmetric matrix A is scaled diagonally dominant 
(sdd) if there exists a diagonal matrix D>0 s.t.

DAD is dd.

*Thanks to Pablo Parrilo for telling us about sdd matrices.

Greshgorin’s circle theorem
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Optimization over these sets is an SDP, SOCP, LP !!
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Two natural matrix programs: DDP and SDPP

LP:

SDP:

SDDP:

DDP:
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From matrices to polynomials
Thm. A polynomial p is dsos

if and only if

Thm. A polynomial p is sdsos

if and only if
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Optimization over r-dsos and r-dsos polynomials

• Can be done by LP and SOCP respectively!

• iSOS: add-on to SPOTless (package by Megretski, Tobenkin, Permenter –MIT) 

https://github.com/spot-toolbox/spotless

How well does it do?!
• Our paper shows encouraging experiments from:

Control, polynomial optimization, statistics, combinatorial 
optimization, options pricing, sparse PCA, etc.

• And we’ll give converse results
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A parametric family
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Converse results

Thm. Any even positive definite form p is r-dsos for some r.

Thm. For any positive definite form p, there exists an integer 
r and a polynomial q of degree r such that

q is dsos and pq is dsos.

• Search for q is an LP

• Such a q is a certificate of nonnegativity of p

• Proof follows from a result of Habicht (1940)

(Even forms include copositive programming, nonnegative switched systems, etc.)
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Converse results: stability of switched linear systems
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Converse results: stability of switched linear systems
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Converse results: stability of switched linear systems
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Larger-scale 
applications in 
control
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Stabilizing the inverted N-link pendulum (2N states)

N=1
N=2

N=6

Runtime:

ROA volume ratio:

(w/ Majumdar, Tedrake)
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Stabilizing ATLAS

[Majumdar, AAA, Tedrake]

Done by SDSOS Optimization

• 30 states        14 control inputs    Cubic dynamics
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More recent directions…

(w/ A. Majumdar, Stanford)

Move towards 
real-time algebraic optimization

- e.g., barrier certificates
[Prajna, Jadbabaie, Pappas]
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More recent directions…

(w/ S. Dash, IBM, 
G. Hall, Princeton)

Iterative DSOS/SDSOS via 
- Column generation

- Cholesky change of basis
(Next talk!)



Main messages
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Want to know more?
aaa.princeton.edu

Workshop webpage:
aaa.princeton.edu/largesdps



Backup slides…
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r-dsos can in fact outperform sos

nonnegative but not sos!

The Motzkin polynomial:

…but it’s 2-dsos.
(certificate of nonnegativity using LP)

Another ternary sextic:

not sos, but 1-dsos (hence nonnegative)
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Minimizing a form on the sphere
• degree=4; all coefficients 

present – generated randomly

n=10 Lower 
bound

Run 
time 
(secs)

sos (sedumi) -1.920 1.01

sos (mosek) -1.920 0.184

sdsos -5.046 0.152

dsos -5.312 0.067

BARON -175.4 0.35
n=30 Lower 

bound
Run 
time
(secs)

sos (sedumi) --------- ∞

sos (mosek) --------- ∞

sdsos -36.038 9.431

dsos -36.850 8.256

BARON -28546.1

n=15 Lower 
bound

Run 
time 
(secs)

sos (sedumi) -3.263 165.3

sos (mosek) -3.263 5.537

sdsos -10.433 0.444

dsos -10.957 0.370

BARON -1079.9 0.62
n=40 Lower 

bound
Run 
time 
(secs)

sos (sedumi) --------- ∞

sos (mosek) --------- ∞

sdsos -61.248 53.95

dsos -62.2954 26.02

n=20 Lower 
bound

Run 
time 
(secs)

sos (sedumi) -3.579 5749

sos (mosek) -3.579 79.06

sdsos -17.333 1.935

dsos -18.015 1.301

BARON -5287.9 3.69
n=50 Lower 

bound
Run 
time 
(secs)

sos (sedumi) --------- ∞

sos (mosek) --------- ∞

sdsos -93.22 100.5

dsos -94.25 72.79

• PC: 3.4 GHz, 

16 Gb RAM
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SOSSDP

Q. Is it any easier to decide sos?

Yes!  Can be reduced to a semidefinite program (SDP)

[Lasserre], [Nesterov], [Parrilo]
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Application 1: polynomial optimization

Many applications:

Equivalent 
formulation:

Combinatorial optimization (including all problems in NP)

Computation of equilibria in games

Machine learning (shape constrained regression, topic modeling, etc.)

The optimal power flow (OPF) problem

Sensor network localization

Optimal configurations for formation flying


