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Optimization over nonnegative polynomials
Defn. A polynomial p(x) = p(xq, ..., x;,) is nonnegative if p(x) = 0, Vx € R".

Ex. Decide if the following polynomial is nonnegative:

plz) = zf-— 6:1:1332 + 2z 73 + 6x1x3 + 97272 — 6x7xoT3
—14z1 7972 + 4175 + 523 — Txixs + 1675

Basic semialgebraic set:
{z € R"| fi(z) >0, hi(z) =0}
Ex. 201 + 5:13%%2 —x3 > ()

5—9:?4—2@933:0
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Application 1: verification of dynamical systems

Properties of interest:
e Stability of equilibrium points Lyapunov
e Boundedness of trajectories Theory

e Invariance of sets T
~.w. e Collision avoidance

V4
Search for functions

satisfying certain
nonnegativity constraints

E.g. - existence of a Lyapunov function
V(ix) >0,
Vix) <B=2V(kx) <0

implies {x| V(x) < B}isinthe
Qe 5 region of attraction (ROA).



2: Statistics and Machine Learning

e Shape-constrained regression; e.g., monotone regression

F
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e How to parameterize a polynomial p(x, x,) to enforce monotonicity over [0,1]%?

Need its partial derivatives to be nonnegative over [0,1]%.
e Let’sseeasimple example in one variable...
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Imposing monotonicity

e For whatvalues of a, b is the following polynomial monotone over [0,1]?

p(x) = x*+ax3+ bx? — (a + b)x

a=-1,b=-3
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How to prove nonnegativity?

p(z) = zi— 6z + 225713+ 6:1;%::3 + 9:1:1:1:2 622073
—14z1 7972 + 43175 + 525 — Txixs + 1675

Nonnegative

)

p(r) = (2] —3z179 + 7173 + 223)° + (7173 — T273)? SOS
+(4x5 — 23)°.

e Extends to the constrained case:
p(x) = o¢(x) + Yo:(x)g;(x),0;(x) SOS = p(x) = 0 on{x| g;(x) = 0}

e The search for such algebraic certificates ---->
e Can produce a hierarchy; connections to Hilbert’s 17t problem, etc.
e Fundamental work of many: [Lasserre, Nesterov, Parrilo, Shor, ... ]
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Local stability — SOS on the Acrobot

Swing-up:
o -sos 15

’ % ” [ JE0 [ sos |

| | |
w n - =]

‘Balance:

Controller
designed by SOS

[Majumdar, AAA, Tedrake ]
gf;w,ggggz Hf (Best paper award - IEEE Conf. on Robotics and Automation) 7



Practical limitations of SOS

e Scalability is a nontrivial challenge!

Thm: p(x) of degree 2d is sos if and only if
p(x) =2"Qz Q=0

d1T
z=11,21,T9,...,%Tpn, T1X2, ..., T,]

n

e The size of the Gram matrix is:

(4% (")

e Polynomial in n for fixed d, but grows quickly

 The semidefinite constraint is expensive

e E.g., local stability analysis of a 20-state cubic vector field is typically
an SDP with ~1.2M decision variables and ~200k constraints
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Simple idea...

e Let’s not work with SOS...

e Give other sufficient conditions for nonnegativity that are
perhaps stronger than SOS, but hopefully cheaper

[AAA, Majumdar]
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Not any set inside SOS would work...

Consider, e.g., the following two sets:

1) All polynomials that are sums of 4t" powers of polynomials

2) All polynomials that are sums of 3 squares of polynomials

POS

Both sets are clearly inside the SOS cone

e But linear optimization over either set is intractable!
e Sosetinclusion doesn’t mean anything in terms of complexity

e \We have to work a bit harder...
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dsos and sdsos

Defn. A polynomial p is diagonally-dominant-sum-of-squares
(dsos) if it can be written as:

plx) = Za m +Z '3 (mg(x) + m;(a +Z 913 m;(x) —m; (1))2

1

for some monomials m;, M
and nonnegative scalars a;, 3;;. 3;;

Defn. A polynomial p is scaled-diagonally-dominant-sum-of-
squares (sdsos) if it can be written as:

= Zaﬂn )+ Z B:;m? )+ BJFmJ z))? + Z(@]m(m) — Bi_jmj(:z’))g,
i ij

for some monomials 1, M
and scalars «:. 355, 55, 85, B;; with a; > 0.

e Obvious: psos, , € SDSOS, 4 C SOS,q C POS,q 1

HE
UNIVERSITY =



r-dsos and r-sdsos

Defn. A polynomial p is r-diagonally-dominant-sum-of-
squares (r-dsos) if o
p - (Zz I‘f )

is dsos.

Defn. A polynomial p is r-scaled-diagonally-dominant-sum-
of-squares (r-sdsos) if

. DAY

p - (Zz ‘Iz)

is sdsos.

Allows us to develop a hierarchy of relaxations...
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dd and sdd matrices

Defn. A symmetric matrix A is diagonally dominant (dd) if

Qi 2 )iz |@ig| for all i.

Defn*. A symmetric matrix A is scaled diagonally dominant
(sdd) if there exists a diagonal matrix D>0 s.t.

DAD is dd.

dd = sdd = psd

Greshgorin’s circle theorem

| B *Thanks to Pablo Parrilo for telling us about sdd matrices. 13



I +xA+yB

1

A B
10 x 10
random

Y o

Optimization over these sets is an SDP, SOCP, LP !!
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Two natural matrix programs: DDP and SDPP
min(C, X)
LP: AX)=1b
X diagonal&nonnegative
min(C, X)
ppp:  A(X)=1b
X dd
sppp:  min(C, X)
AX)=0b
X sdd
min(C, X)
AX) =10
X >0

SDP:

15



From matrices to polynomials

Thm. A polynomial p is dsos

p= Zazm +ZB (mi +m;)* + B (mi —m;)?

if and only if p(:c) = Z (:C)QZ(ZC>
Q dd

)

Thm. A polynomial p is sdsos

D = Zoz,,,m +Z m@+’)/:, m] (Bfmi—mej)Q,

if and only if p(a:') — > (:U)QZ(ZC)
O sdd

(.-l PRINCETON -
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Optimization over r-dsos and r-dsos polynomials

e Can be done by | P and SOCP respectively!
e {SOS: add-on to SPOTless (package by Megretski, Tobenkin, Permenter —MIT)

https://github.com/spot-toolbox/spotless

How well does it do?!

Our paper shows encouraging experiments from:
Control, polynomial optimization, statistics, combinatorial

optimization, options pricing, sparse PCA, etc.
e And we’ll give converse results
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A parametric family

2 3
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Converse results

Thm. Any even positive definite form p is r-dsos for some r.

e Hence proof of positivity can always be found with LP

e Proof follows from a result of Polya (1928) on Hilbert’s 17t
problem

(Even forms include copositive programming, nonnegative switched systems, etc.)

Thm. For any positive definite form p, there exists an integer
r and a polynomial g of degree r such that

g is dsos and pq is dsos.

e SearchforqisanLP
e Such a qis a certificate of nonnegativity of p
e Proof follows from a result of Habicht (1940)

PRINCETON ==
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Converse results: stability of switched linear systems

Problem:
Given a set of n X n matrices M = {44, ...,4,,}
When is the system X1 = Ag ()X stable?

Joint spectral radius (JSR) of M = {A4, ..., A, }:

| 1/k
p(44,..,A,;,;) = lim max “Aak ...AO.ZA01|

k—o ge{1,...m}k

Theorem:
Switched linear system is stable © p(44, ..., 4,;,) < 1

Goal: compute upperbounds on JSR

(.-l PRINCETON —
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Converse results: stability of switched linear systems

o(Ay, ., A) <1
=
3 a pd polynomial Lyapunov function V(x) such that V' (x) — V(4;x) > 0,Vx # 0.

p(Ay, ., Ap) < 1
=

PRINCETON = 21
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Converse results: stability of switched linear systems

Theorem (AAA,Hall): For nonnegative {A4, ..., A}, p(41, ..., 4) <1 &
37 € N and a polynomial Lyapunov function V(x) such that
V(x.2) r-dsos and V(x.?) — V(4;x.?) r-dsos. (*)

Proof:

() (x)=2V(x)=0andV(x) —V(4;x) = 0foranyx = 0.

Combined to 4; = 0, this implies that x1 = Ag (k)X is stable for x, = 0.
This can be extended to any x, by noting that x, = x§ — xg,xg,xg = 0.

(=) From theorem of Parrilo-Jadbabie, and using Polya’s result as V (x.% )
and V(x.?) — V(4;x.?) are even forms.
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Larger-scale
applications in
control

23



Stabilizing the i

nve

rted N-link pendulum (2N states)
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(b) 95-95 subspace.

(w/ Majumdar, Tedrake) 24

N=1 1
N=2 i
Runtime:
2N (7 states) ) 6 g 10 2 4 16 18 70 77
DSOS - 1] 044 | 2.04 | 3.08 0.67 | 25.1 | 742 | 2005 | 492.0 | 823.2
SDSOS =1 072 672 | 7.8 750 | 02.4 | 180.0 | 424.74 | 8460 | 1275.6
SOS (SeDuMi) | =1 | 3.07 | 1560 | 1607.3] | 236765 | oo o 0 > 0
SOS (MOSEK) | =1 | 083 | 162 | 149.1|] 15265 | =~ o o e o
ROA volume ratio:
2N (states) 4 6 8 10 12
Pdeos/Pooe | 038 | 045 | 0.13 | 0.12 | 0.09
{ [ padsos/Pece | 088 | 0.84 | 0.81 | 0.79 | 0.79
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Stabilizing ATLAS

30 states 14 control inputs Cubic dynamics

Done by SDSOS Optimization

[Majumdar, AAA, Tedrake]
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More recent directions...

Move towards
real-time algebraic optimization

- e.g., barrier certificates
[Prajna, Jadbabaie, Pappas]
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(w/ A. Majumdar, Stanford)
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More recent directions...

Iterative DSOS/SDSOS via
- Column generation

- Cholesky change of basis

0.3 F

o 1 1 1 1 1 1 1
DIFU.‘I 0.3 0.2 0.1 0 0.1 0.2 0.3

(w/ S. Dash, IBM,
G. Hall, Princeton)
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(Next talk!)
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Main messages

Want to know more?
aaa.princeton.edu

Vien H=ORFE

Workshop webpage:
aaa.princeton.edu/largesdps

28
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r-dsos can in fact outperform sos

The Motzkin polynomial:

.- 4.2, 2.4 2 2 % . 8
Mz, o5, 28) = z x5+ xj5; — 35 w555 g

nonnegative but not sos!

...but it’s 2-dsos.
(certificate of nonnegativity using LP)

Another ternary sextic:

49 4.9 4.9 2 9 92
(T, o, 3) = X715+ Toks + T3x] — 3x70505

not sos, but 1-dsos (hence nonnegative)
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Minimizing a form on the sphere
min p(aj) e degree=4; all coefficients e PC:3.4GHz

resSn—l1 present — generated randomly 16 Gb RAM
n=10 Lower Run n=15 Lower Run n=20 Lower Run
bound time bound time bound time
(secs) (secs) (secs)

SOS (sedumi) -1.920 1.01 sos (sedumi) -3.263 165.3 sos (sedumi) -3.579 5749
sOS (mosek) -1.920 0.184 sos (mosek) -3.263 5.537 sos (mosek) -3.579 79.06

sdsos -5.046 0.152 sdsos -10.433 0.444 sdsos -17.333 1.935
dsos -5.312 0.067 dsos -10.957 0.370 dsos -18.015 1.301
BARON -175.4 0.35 BARON -1079.9 0.62 BARON -5287.9 3.69
n=30 Lower Run n=40 Lower Run n=50 Lower Run
bound time bound time bound time
(secs) (secs) (secs)
SOS (sedumi) --------- = SOsS (sedumi) --------- = SOsS (sedumi) --------- =
SOS (mosek)  --------- = SOS (mosek)  --------- = SOS (mosek)  --------- =
sdsos -36.038 9.431 sdsos -61.248 53.95 sdsos -93.22 100.5
dsos -36.850 8.256 dsos -62.2954 26.02 dsos -94.25 72.79

' BARON -28546.1



SOS->SDP

Q. Is it any easier to decide sos? [Lasserre], [Nesterov], [Parrilo]

=Yes! Can be reduced to a semidefinite program (SDP)

Thm: A polynomial p(x) of degree 2d is sos if and only if there
exists a matrix Q such that

Q >0,
p(x) = z(x)" Qz(x),
where
Z = [1,3717 L2y o ooy Tpy LIL2y w - oy Ii]T
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Application 1: polynomial optimization

Equivalent Imax
fc?rmulation: Y K W*\J .
p(x)—v >0 1Y
Vr € {fi(r) <0, hi(r) =0}

=Many applications:

=sCombinatorial optimization (including all problems in NP)
=Computation of equilibria in games

=Machine learning (shape constrained regression, topic modeling, etc.)
*The optimal power flow (OPF) problem

sSensor network localization

=Optimal configurations for formation flying
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