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Motivating Problem: Matrix Completion

Task: given a partially observable data matrix X, predict the unobserved
entries

Application to recommender systems, sensor networks, microarray data,
etc.

A popular example is the Netflix challenge: users are rows, movies are
columns, ratings (1 to 5 stars) are entries
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Low-Rank Matrix Completion

Let X € R™*" be the partially observed data matrix

Q denotes the entries of X that are observable, |Q] < m x n

It is natural to presume that the “true” data matrix has low rank
structure (analogous to sparsity in linear regression)

The estimated data matrix Z should have:
@ Good predictive performance on the unobserved entries

@ Interpretability via low-rank structure
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Nuclear Norm Regularization for Matrix Completion

Low-Rank Least Squares Problem

% Z(i,j)eQ(ZU - Xij)2

sit. rank(Z)<r

Replace rank constraint with constraint/penalty on the nuclear norm of Z

r
Nuclear norm is: ||Z||y = Zgj
=i

where
e Z=UDVT
@ U € R™*" is orthonormal, V € R"™" is orthonormal

e D = Diag(o1,...,0,) comprises the non-zero singular values of Z

< 6
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Nuclear Norm Regularized Problem

We aspire to solve:

. R ; — 1 L X-)2
By 2% = Lmin f(Z) = 3 X jyealZi — Xi)

st. rank(Z) <r

Instead we will solve:

. * i 1
NNs: * = ulL i f(Z) =3 X jealdi — X;)?

st. ||Z|ly <o
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Nuclear Norm Regularized Low-Rank Matrix Completion

Relaxation of the "hard” problem is the nuclear norm regularized least
squares problem:

Nuclear Norm Regularized Matrix Completion [Fazel 2002]

NNs: o= min = f(Z):=3 X pealZi = X5)’

st. |Z|n <6

The above is a convex optimization problem

The nuclear norm constraint is intended to induce low-rank solutions

@ Think ¢; norm on the singular values of Z
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Equivalent SDP Problem on Spectrahedron

Instead of working directly with ||Z||ny < §, perhaps work with
spectrahedral representation:

>0

A { w z }
= T
IZ||n < 3§ iff  there exists W, Y for which 20y

trace(A) < 2§

Solve the equivalent problem on spectrahedron:

S5 fr = ATV F(Z) =3 XgijealZi — Xi)?
w Zz
s.t [ 7T 'y ] =0

trace(W) + trace(Y) < 2§
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Nuclear Norm Regularized Low-Rank Matrix Completion,
cont.

Nuclear Norm Regularized Matrix Completion [Fazel 2002]

. x L ; o 1L . X..)2
NNs: £ = min - f(2)i= el - X5)

st. ||Z|y <o

Extensive work studying data generating mechanisms that ensure that
optimal solutions of NNjs have low rank (e.g. [Candes and Recht 2009],
[Candes and Tao 2010], [Recht et al. 2010], ...)

It is imperative that the algorithm for NNj reliably delivers solutions with
good predictive performance and low rank after a reasonable amount of
time

10
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NNs Alignment with Frank-Wolfe Algorithm

. L : o AL
NNs = = = zgklrgxn f(Z2) =3 Z(i,j)eQ(Z/j - X;)?
st. [|[Z]n <6

NN; aligns well for computing solutions using Frank-Wolfe algorithm:
@ Vf(Z) = Pq(Z — X) :=(Z — X)gq is viable to compute

@ the Frank-Wolfe method needs to solve a
linear optimization subproblem at each iteration of the form:

7+ arg mi
1Zln<

where C € R™" and C o Z := trace(C" Z)

@ The subproblem solution is straightforward:
e compute largest singular value o1 of C with associated left and

right normalized eigenvectors uy, vq
o 7 —5U1(V1)T 11

5 {CeZ}
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Frank-Wolfe Method

Problem of interest is:

CP: f* = min f(x)
st. xe$

@ S C R"is compact and convex

@ f(-) is convex on S
@ let x* denote any optimal solution of CP
@ Vf(-)is Lipschitz on S: ||Vf(x) — VI (y)|« < L||s — y]| for all

x,y €S

@ it is “easy” to do linear optimization on S for any c :

X+ arg mig {c"x}
x€
13
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Frank-Wolfe Method, cont.

CP: f* = min f(x)
st. xe$

At iteration k of the Frank-Wolfe method:

Vf(wk)
2oh

14
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Frank-Wolfe Method, cont.

At iteration k of the Frank-Wolfe method:

Set Xk « arg mig{f(xk) + VF(xx) T (x — x)}
x€

15
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Frank-Wolfe Method, cont.

At iteration k of the Frank-Wolfe method:

Ty
Tk+1

Tk
Set xp11 ¢ Xk + C_vk()?k — Xk), where ay € [0, 1]

16
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Frank Wolfe Method, cont.

CP: f* = min f(x)
st. xe$

Basic Frank-Wolfe method for minimizing f(x) on S

Initialize at xo € S, (optional) initial lower bound B_; < f*, k«+ 0.

At iteration k :
@ Compute VF(xx) .
@ Compute X < arg miE{Vf(Xk)TX} .
X€E
© Update lower bound: By + max{By_1, f(xx) + VF(xx)" (X — xi)}

© Set xxi11 < xx + &k()?k — Xk), where @y € [0, 1] .

17
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Some Step-size Rules/Strategies

@ "Recent standard”: ay = =5
@ Exact line-search: ay = argmingcpo,1{f(xx + (%% — x«x))}
@ QA (Quadratic approximation) step-size:

—Vf(Xk)T()?k — Xk) }
Ll % — xi||?

Qy = min {1,

@ Dynamic strategy: determined by some history of optimality
bounds, see [FG]

1

@ Simple averaging: Gk = 133

o Constant step-size: ay = & for some given & € [0, 1]
18
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Computational Guarantee for Frank-Wolfe

A Computational Guarantee for the Frank-Wolfe algorithm

If the step-size sequence {ay} is chosen by exact line-search or a certain
quadratic approximation (QA) line-search rule, then for all k > 1 it holds
that: q oC
fou)—f" < flw) =Bk £ —5——F < —
e L, k

f(Xo)*BQ 2C

where C = L - diam(S)>2.

It will be useful to understand this guarantee as arising from:

: = L L izon
f(Xi+1)—B,'+1 - f(Xi)_Bi 2C =U 1 ... J

19
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Diameter and Lipschitz Gradient

Let || - || be a prescribed norm on R”

Dual norm is ||s|. := max<1{s"x}

B(x,p) == A{y :lly =xl < p}

Diam(5) := maxcyes{lx — v}

Let L be the Lipschitz constant of Vf(:) on S:

[VF(x) = V)|« <L|x—y| forallx,y €S

20
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Renewed Interest in Frank-Wolfe Algorithm

Renewed interest in Frank-Wolfe algorithm due to:

@ Relevance of applications

Regression
Boosting/classification
Matrix completion
Image construction

@ Requirements for only moderately high accuracy solutions
@ Necessity of simple methods for huge-scale problems

@ Structural implications (sparsity, low-rank) induced by the algorithm
itself

21
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A Linear Convergence Result

f(-) is u-strongly convex on S if there exists u > 0 for which:

F(y) 2 F() + V)T (y =x) + 5y = x|* forall x,y € S

Sublinear and Linear Convergence under Interior Solutions and Strong

Convexity ~[W,GM]

Suppose the step-size sequence {ay} is chosen using the QA rule or by
line-search. Then for all kK > 1 it holds that:

) - < m‘”{mkm(s))z ()= 1) [1_<L(Da£(5))>]k}

where p = dist(x*, dS) .

22
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Frank-Wolfe For Low-Rank Matrix Completion

. I : i 1L L X..)2

st. [|Z|ln <6

We focus on the Frank-Wolfe method and its extensions

@ A key driver of our work is the favorable low-rank structural
properties of Frank-Wolfe

Frank-Wolfe has been directly (and indirectly) applied to NNs by [Jaggi
and Sulovsk 2010], [Harchaoui, Juditsky, and Nemirovski 2012], [Mu et
al. 2014], and [Rao, Shah, and Wright 2014]

23
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Frank-Wolfe For Low-Rank Matrix Completion, cont.

. O : o 1L L X..)2

st. [|Z|ln <6

As applied to NNj, at iteration k Frank-Wolfe computes

7K+ a in {VFf(ZK) ez
g min {VA(Z") e 2]

and updates:
ZK (1 — aw)ZK + ax 7" for some ay € [0,1]
Note that /* + —6uy(v1) T is a rank-one matrix where uy, v; are the

singular vectors associated with the largest singular value of V£(Z¥)
24



Frank-Wolfe for Matrix Completion
0000000000000

Properties of Frank-Wolfe Applied to NN;

At each iteration, Frank-Wolfe forms Z**1 by adding a rank-one matrix
Z¥ to a scaling of the current iterate Z:

7K (1= @) 25 + i Zd = (1 — @) ZF — ardun(vi)7

Assuming that rank(Z°) = 1, this implies that rank(Z*) < k +1
Combined with the optimality guarantee for Frank-Wolfe, we have a nice

tradeoff between data-fidelity and low-rank structure:

862
k+3

f(Zk—f < and  rank(Z¥) < k+1

What happens in practice?

25
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Practical Behavior of Frank-Wolfe Applied to NN, cont.

Instance with m = 2000, n = 2500 and rank(Z*) = 37

Frank-Wolfe Applied to a Typical Instance of NN;: 37 Iterations

f*

Bl

rank(Z¥) vs. k Log;g <f(zk)_f*) vs. k

26
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Practical Behavior of Frank-Wolfe Applied to NN, cont.

Instance with m = 2000, n = 2500 and rank(Z*) = 37

Frank-Wolfe Applied to a Typical Instance of NN;s: ~ 450 Iterations

rank(Z¥) vs. k Logg (f(zi)*_f*) vs. k

26
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Practical Behavior of Frank-Wolfe Applied to NN, cont.

Instance with m = 2000, n = 2500 and rank(Z*) = 37

Frank-Wolfe Applied to a Typical Instance of NNs: ~ 2000 lterations

rank(Z¥) vs. k Logg (f(zkf)*_f*> vs. k

26
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Practical Behavior of Frank-Wolfe Applied to NN;

Theoretical bounds for Frank-Wolfe:

802
k+3

f(Zk) - f* < and rank(Z¥) < k+1

We propose an extension of Frank-Wolfe that:

@ In theory has computational guarantees for f(Z*) — f* and
rank(Z*) that are at least as good as (and sometimes better than)
Frank-Wolfe

@ In practice is able to efficiently deliver a solution with the correct
optimal rank and better training error than Frank-Wolfe

27
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Preview of In-Face Extended Frank-Wolfe Behavior

Preview of IF Extended FW (versus FW)

k *
rank(Z¥) vs. Time Log;o (%) vs. Time

For this problem, rank(Z*) = 37 (m = 2000, n = 2500)
28
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In-Face Extended Frank-Wolfe Overview

We develop a general methodological approach for preserving structure
(low rank) while making objective function improvements based on
“in-face directions”

For the matrix completion problem NNjs, in-face directions preserve
low-rank solutions

@ This is good since Z* should (hopefully) be low-rank

@ Working with low-rank matrices also yields computational savings at
all intermediate iterations

30
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In-Face Directions

Let Fs(xx) denote the minimal face of S that contains xk

31
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In-Face Directions, cont.

An in-face step moves in any “reasonably good” direction that remains in
fs(Xk)

The in-face direction should be relatively easy to compute

32
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In-Face Directions, cont.

Main examples of “in-face” directions:
@ Wolfe's "away step” direction

@ Fully optimizing f(-) over Fs(xx)

33
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What are the Faces of the Nuclear Norm Ball?

The nuclear norm ball of radius §:
B(0,8) := {Z € R™" . | Z||y < 5}

Theorem [So 1990]: Minimal Faces of the Nuclear Norm Ball

Let Z € 9B(0,5) be given, and consider the thin SVD of Z = UDV'T .
Then the minimal face of 9B(0, d) containing Z is:

F(Z)={UMVT : M eS™", M =0, trace(M) =4} ,

and dim(F(2)) =r(r+1)/2-1.

@ Low-dimensional faces of the nuclear norm ball correspond to
low-rank matrices on its boundary.

@ All matrices lying on F(Z) have rank at most r

@ F(Z)is a linear transformation of a standard spectrahedron

34
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In-Face Extended Frank-Wolfe Method

In-face directions have two important properties:
@ They keep the next iterate within Fs(xk)

@ They should be relatively easy to compute

Outline of each iteration of the In-Face Extended Frank-Wolfe Method:
@ Compute the in-face direction

@ Decide whether or not to accept an in-face step (partial or full), by
checking its objective function value progress

@ If we reject an in-face step, compute a regular FW step

35
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In-Face Steps

Three points to choose from:

B

@ x.: full step to the relative boundary of Fs(xx)

@ x{\: partial step that remains in the relative interior of Fs(x)

R

@ x;': the "regular” Frank-Wolfe step

36
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Decision Rule for In-Face Extended Frank-Wolfe Method

Recall the following useful property for regular FW with line-search or
quadratic approximation line-search step-sizes:

1 = 1 n i
f(X,'+1) — B,'+1 - f(X,') — B; 2C J

Note that these “reciprocal gaps”’ are available at every iteration

We will use these reciprocal gaps to measure the progress made by
in-face directions

37
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Decision Rule for In-Face Extended Frank-Wolfe Method,
cont.

Decision Rule for In-Face Extended Frank-Wolfe Method

Set 72 > 1 > 0 (think 72 = 1,71 = 0.3)

At iteration k :

@ Decide which of X:‘, xf, x[7 to accept as next iterate:

@ (Go to a lower-dimensional face.) Set x¢41 < xF if

1 1 20!
> + —=.
f(X;?) — B — (Xk) — By 2C

@ (Stay in current face.) Else, set x;q < x7 if

1 1 "2
> + —=.
f(xf‘) — B — f(xx)—Bx 2C

© (Do regular FW step and update lower bound.) Else, set xxt1 x[".

38
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Computatlonal Guarantee for Extended FW I\/Iethod

In the first k iterations, let:

NE = number of steps to the boundary of the minimal face
N,f‘ = number of steps to the interior of the minimal face
NF = number of regular Frank-Wolfe steps

k= Ng+ N+ NE

Computational Guarantee for Extended Frank-Wolfe Method

Theorem: Suppose that the step-sizes are determined by exact
line-search or QA line-search rule. After k iterations of the Extended
Frank-Wolfe method it holds that:

21 D2
YNE + o Np + NE

Fxi) — F* <

where D := diam(S).

39
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In-Face Extended Frank-Wolfe Summary

In-Face Extended Frank-Wolfe method intelligently combines “in-face
directions” with “regular Frank-Wolfe directions”

Computational guarantees improve upon regular Frank-Wolfe
@ Objective function value guarantee is still O(1/k)

@ Guarantee bound on the rank of the iterates is stronger:

rank(Z¥) < k+1-2NE — N{ . J

40
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Computational Experiments and Results

Here, we consider three versions of the In-Face Extended Frank-Wolfe
method (IF-...):

@ IF-(0, c0) — uses the away-step strategy and sets 3 = 0 and
Y2 =+

@ IF-Optimization — based on using the in-face optimization strategy
(does not require setting v1,72)

@ IF-Rank-Strategy — uses the away-step strategy and adjusts the
values of 71,72 based on rank(Z*)

We compare against regular Frank-Wolfe and two other away-step
modified Frank-Wolfe algorithms
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Example with m = 2000, n = 2500, 1% observed entries,

and 6 = 8.01

Frank-Wolfe

k *
rank(Z*) vs. Time Logg (%) vs. Time
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Example with m = 2000, n = 2500, 1% observed entries,

and 6 = 8.01

IF-(0, o0)

k *
rank(Z*) vs. Time Logg (f(zf)*_f ) vs. Time
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Example with m = 2000, n = 2500, 1% observed entries,

and 6 = 8.01

IF-Optimization

k *
rank(Z*) vs. Time Logg (%) vs. Time
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Example with m = 2000, n = 2500, 1% observed entries,

and 6 = 8.01

IF-Rank-Strategy

k *
rank(Z*) vs. Time Logg (f(zf)*_f ) vs. Time
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Small-Scale Examples (results averaged over 25 samples)

We generated artificial examples via the model X = low-rank + noise,
controlling for:

@ SNR - signal-to-noise ratio
@ p — fraction of observed entries

@ r — true underlying rank

Small-Scale Examples (25 samples per example)

In-Face Extended FW (IF-...) Away Steps
Regular e Tn-Face  Rank Fully
Data Metric Fw T1 01 0o Opt. Strategy  Natural Atomic  Corrective FW CoGEnT
m =200, n = 400, p = 0.10 Time (secs) 2951 2286 2307 789 234 2.30 1471 621 8.76 20.85
r=10,SNR = 5,8,,¢ = 3.75 Final Rank ~ 118.68 1636 1636 16.44 2032 2820 1672 119.00 9284 79.96
Maximum Rank ~ 146.48 1004 17.28 17.56 3208 14520 1804 12196 991.60* **
m=200,n = 400, p = 0.20 Time (secs)  115.75 15342 15089 27.60 2062  3.48 5052 2452 196.20 65.88
r=15,SNR = 4,5,,; = 3.82 Final Rank 96.44 1616 1612 1652 1988  21.24 1668  106.60 107.04 93.40
Maximum Rank 15652 272 1796 17.80 3148 16036 1884 106.80 1812.92% *
m =200, n = 400, p = 0.30 Time (secs)  171.23 19896 20201 3593 3167  5.04 6622  67.72 >381.91 93.03
r=20,SNR = 3,5,y = 3.63 Final Rank 91.80 2008 2008 20.60 2172 2556 2044 94.64 113.84 104.60
Maximum Rank ~ 162.24 2580 2204 21.96 3336  168.72 2216 9508 1609.40% b
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Small-Scale Examples (results averaged over 25 samples)

In-Face Extended FW (IF-...)

v1,72 In-Face Rank

Data Methods 0,00 Opt. Strat.

m = 200, n = 400, p = 0.10 Time (secs) 7.89 2.34 2.30
r=10,SNR = 5,0,y = 3.75 Final Rank 16.44 29.32 28.20
Maximum Rank 17.56 32.08 145.20

m = 200, n = 400, p = 0.20 Time (secs) 27.60 20.62 3.48
r=15,SNR = 4,0,,, = 3.82 Final Rank 16.52 19.88 21.24
Maximum Rank 17.80  31.48 160.36

m = 200, n = 400, p = 0.30 Time (secs) 3593  31.67 5.04
r =20,SNR = 3,0, = 3.63 Final Rank 20.60 21.72 25.56
Maximum Rank 21.96 33.36 168.72
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Small-Scale Examples (results averaged over 25 samples)

In-Face Extended FW (IF-...)

T i InFace Rank

Data T Methods 0,00 Opt. Strat.

m = 200, n = 400, p = 0.10 Time (secs) 7.8 2.34 230
£ =10,SNR = 5,5, = 3.75 Final Rank  16.44 2032 28.20
Maximum Rank  17.56  32.08 145.20

m = 200, n = 400, p = 0.20 Time (secs)  27.60 2062 3.48
=15,SNR = 4, 55 = 3.82 Final Rank  16.52  19.88 21.24
Maximum Rank  17.80  31.48 160.36

Time (secs)  35.93 3167 5.04

Final Rank  20.60  21.72 25.56

Maximum Rank  21.96 3336 168.72

@ IF-(0, o0) reliably always delivers a solution with the lowest rank
reasonably quickly

@ IF-Rank-Strategy delivers the best run times — beating existing
methods by a factor of 10 or more

@ IF-Rank-Strategy sometimes fails on large problems —
IF-Optimization is more robust
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MovieLens10M Dataset, m = 69878, n = 10677,

Q] = 107 (1.3% sparsity), and § = 2.59

MovieLens10M Dataset

Frank-Wolfe IF-(0, o)
Relative Optimality Gap Time (mins) Rank Time (mins) Rank
10715 7.38 103 7.01 44
1072 28.69 315 14.73 79
1072 69.53 461 22.80 107
10725 178.54 454 42.24 138

For this large-scale instance, we test IF-(0, co), which is most promising
at delivering a low-rank solution, and benchmark against Frank-Wolfe
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Summary

@ Despite guarantees for f(Z¥) — f* and rank(Z*), the Frank-Wolfe
method can fail at delivering a low-rank solution within a reasonable
amount of time.

@ In-face directions are a general methodological approach for
preserving structure (low rank) while making objective function
improvements

@ Computational guarantees for In-Face Extended FW Method in
terms of optimality gaps

@ In the case of matrix completion, In-Face Extended FW

o has computational guarantees in terms of improved bounds on
the rank of the iterates

o is able to efficiently deliver a low-rank solution reasonably
quickly in practice

@ Paper includes full computational evaluation on simulated and real
data instances 46
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Paper:

“An Extended Frank-Wolfe Method with ‘In-Face’ Directions, and its
Application to Low-Rank Matrix Completion”

Available at http://arxiv.org/abs/1511.02204
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Back-up: Medium-Large Scale Examples

Medium-Large Scale Examples

In-Face Extended FW (IF-...) Away Steps
Regular R n-Face  Rank Fully
Data Metric FW 1 0.1 0.  Opt. Strategy  Natural Atomic Corrective FW
m =500, = 1000, p = 0.25 Time (secs) 137.62 5195 5321 1820  4.41 6.37 3155 15731 39.81
r=15,5NR = 2,6 = 3.57 Final Rank (Max Rank) 53 (126)  16(17) 15(17) 16(17) 17 (19) 121(136)  15(17) 50 (52) 78 (984%)
m = 500, n = 1000, p = 0.25 Time (secs) 256.08 11037 11077 4607  6.76 7.91 7395 32224 22750
r=15,SNR = 10,6 = 4.11 Final Rank (Max Rank) 41 (128) ~ 15(17) 15(17) 16(17) 15(18) 18 (140) 16 (17) 48 (48) 81 (971%)
m = 1500, n = 2000, p = 0.05 Time (secs) 124.76 10897 11358 2475 1109 1271 4023 60.83 48.76
r=15,5NR = 2,6 = 6.01 Final Rank (Max Rank) 169 (210) ~ 15(18) 16 (17) 16 (16) 31 (44) 206(206) 16 (16) 128 (138) 106 (736%)
m = 1500, n = 2000, p = 0.05 Time (secs) >800.01 51872 49608 16601  21.90 3141 30958 407.22 >801.89
r=15.5NR = 10,6 = 8.94 Final Rank (Max Rank) 119 (266) ~ 15(17) 15 (17) 15(17) 15(23) 15 (256) 15 (18) 172 (185) 125 (790%)
m = 2000, n = 2500, p = 0.01 Time (secs) 105.44 4539 3647 2315 2007 4783 3007 2692 3965
r=10,5NR = 4,6 = 7.92 Final Rank (Max Rank) 436 (435) 37 (38) 35(38) 37 (38) 67 (107) 430(430) 37 (39) 245 (276) 238 (502%)
m = 2000, n = 250 Time (secs) 99.84 5190 4826 1879  6.92 6.70 3037 89.09 55.11
r=10,5NR =2, Final Rank (Max Rank) 68 (98) 10(11) 10(11) 11(11) 13(15) 94 (94) 10(11)  52(52) 62 (370%)
Time (secs) 25133 16866 17221 6456 2625  17.70 9.79  90.41 350.88
Final Rank (Max Rank) 161 (162) 10 (24) 11(18) 11(20) 22(34) 20 (112) 10 (16) 181 (182) 92 (616%)
Time (secs) 272.19 10719 11658 5265  54.02 14513 10760 94.96 209.86
Final Rank (Max Rank) 483 (483) 33 (43) 34 (36) 32 (37) 63 (123) 476(476) 36 (42) 229 (298) 204 (331%)
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