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How to handle sparsity

Consider the polynomial optimization problem:

P : f ∗ = min{ f (x) : gj(x) ≥ 0, j = 1, . . . ,m }

for some polynomials f , gj ∈ R[x].

Why Polynomial Optimization?
After all ... P is just a particular case of Non Linear

Programming (NLP)!
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How to handle sparsity

True!
... if one is interested with a LOCAL optimum only!!

When searching for a local minimum ...

Optimality conditions and descent algorithms use basic tools
from REAL and CONVEX analysis and linear algebra

� The focus is on how to improve f by looking at a
NEIGHBORHOOD of a nominal point x ∈ K, i.e., LOCALLY

AROUND x ∈ K, and in general,
no GLOBAL property of x ∈ K can be inferred.

The fact that f and gj are POLYNOMIALS does not help much!
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How to handle sparsity

BUT for GLOBAL Optimization
... the picture is different!

Remember that for the GLOBAL minimum f ∗:

f ∗ = sup {λ : f (x)− λ ≥ 0 ∀x ∈ K}.

(Not true for a LOCAL minimum!)

and so to compute f ∗ ...
� one needs to handle EFFICIENTLY the difficult constraint

f (x)− λ ≥ 0 ∀x ∈ K,

i.e. one needs
TRACTABLE CERTIFICATES of POSITIVITY on K

for the polynomial x 7→ f (x)− λ!
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How to handle sparsity

REAL ALGEBRAIC GEOMETRY helps!!!!

Indeed, POWERFUL CERTIFICATES OF POSITIVITY EXIST!

Moreover .... and importantly,

Such certificates are amenable to PRACTICAL COMPUTATION!

(? Stronger Positivstellensatzë exist for analytic functions but
(so far) are useless from a computational viewpoint.)
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How to handle sparsity

SOS-based certificate

Let K := {x : gj(x) ≥ 0, j = 1, . . . ,m }

be compact (with g1(x) = M − ‖x‖2, so that K ⊂ B(0,M)).

Theorem (Putinar’s Positivstellensatz)

If f ∈ R[x] is strictly positive (f > 0) on K then:

† f (x) = σ0(x) +
m∑

j=1

σj(x)gj(x), ∀x ∈ Rn,

for some SOS polynomials (σj) ⊂ R[x].
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How to handle sparsity

However ... In Putinar’s theorem
... nothing is said on the DEGREE of the SOS polynomials (σj)!

BUT ... GOOD news ..!!

� Testing whether † holds
for some SOS (σj) ⊂ R[x] with a degree bound,

is SOLVING an SDP!
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How to handle sparsity

Dual side: The K -moment problem

Given a real sequence y = (yα), α ∈ Nn, does there exist a
Borel measure µ on K such that

† yα =

∫
K

xα1
1 · · · xαn

n dµ, ∀α ∈ Nn.

If yes y is said to have a representing measure supported on K.

Introduce the so-called Riesz linear functional Ly : R[x] → R :

f

(
=
∑
α

fα xα

)
7→ Ly(f ) =

∑
α∈Nn

fα yα
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How to handle sparsity

Let K := {x : gj(x) ≥ 0, j = 1, . . . ,m }

be compact (with g1(x) = M − ‖x‖2, so that K ⊂ B(0,M)).

Theorem
A sequence y = (yα), α ∈ Nn, has a representing measure
supported on K if and only if for every h ∈ R[x]:

(?) Ly (h2) ≥ 0; Ly (h2 gj) ≥ 0, j = 1, . . . ,m.

The condition (?) for all h ∈ R[x]d is equivalent to m + 1 positive
semidefiniteness of some moment and localizing matrices, i.e.,

Md(y) � 0; Md(gj y) � 0, j = 1, . . . ,m.

whose rows & columns are indexed by Nn
d , and entries are

LINEAR in the yα’s
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How to handle sparsity

• In addition, polynomials NONNEGATIVE ON A SET K ⊂ Rn

are ubiquitous. They also appear in many important
applications (outside optimization),

. . . modeled as
particular instances of the so called

Generalized Moment Problem, among which:
Probability, Optimal and Robust Control, Game theory, Signal

processing, multivariate integration, etc.
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How to handle sparsity

GMP: The primal view
The GMP is the infinite-dimensional LP:

GMP : inf
µi∈M(Ki )

{
s∑

i=1

∫
Ki

fi dµi :
s∑

i=1

∫
Ki

hij dµi
≥
= bj , j ∈ J}

with M(Ki) space of Borel measures on Ki ⊂ Rni , i = 1, . . . , s.

GMP: The dual view
The DUAL GMP∗ is the infinite-dimensional LP:

GMP∗ : sup
λj

{
s∑

j∈J

λj bj : fi−
∑
j∈J

λj hij ≥ 0 on Ki , i = 1, . . . , s }
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How to handle sparsity

And one can see that ...
the constraints of GMP∗ state that the functions

x 7→ fi(x)−
∑
j∈J

λj hij(x)

must be nonnegative on certain sets Ki , i = 1, . . . , s.
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How to handle sparsity

Several examples will follow .... and

Global OPTIM → f ∗ = inf
x
{ f (x) : x ∈ K }

is the SIMPLEST example of the GMP

because ...

f ∗ = inf
µ∈M(K)

{
∫

K
f dµ :

∫
K

1 dµ = 1}

• Indeed if f (x) ≥ f ∗ for all x ∈ K and µ is a probability measure
on K, then

∫
K f dµ ≥

∫
f ∗ dµ = f ∗.

• On the other hand, for every x ∈ K the probability measure
µ := δx is such that

∫
f dµ = f (x).
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How to handle sparsity

The moment-SOS approach
consists of using Putinar’s certificate in potentially any
application where one has to handle a positivity constraint
"f ≥ 0 on K" on a compact semi-algebraic set K (Global
optimization is only one example.)

Alternatively, the moment-LP approach uses
Krivine-Vasilescu-Handelman’s positivity certificate (but has
several drawbacks).

In many situations this amounts to
solving a HIERARCHY of :

LINEAR PROGRAMS, or
SEMIDEFINITE PROGRAMS

... of increasing size!.
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How to handle sparsity

SDP-hierarchy for optimization

Replace f ∗ = sup
λ

{λ : f (x)− λ ≥ 0 ∀x ∈ K} with:

The SDP-hierarchy indexed by d ∈ N:

f ∗d = sup
λ,σj

{λ : f − λ = σ0︸︷︷︸
SOS

+
m∑

j=1

σj︸︷︷︸
SOS

gj ; deg (σj gj) ≤ 2d }

Theorem
The sequence (f ∗d ), d ∈ N, is MONOTONE NON
DECREASING and when K is compact then:

f ∗ = lim
d→∞

f ∗d and finite convergence is generic.
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How to handle sparsity

• What makes this approach exciting is that it is at the
crossroads of several disciplines/applications:

Commutative, Non-commutative, and Non-linear
ALGEBRA
Real algebraic geometry, and Functional Analysis
Optimization, Convex Analysis
Computational Complexity in Computer Science, where
LP- and SDP-HIERARCHIES have become an important
tool to analyze Hardness of Approximation for 0/1
combinatorial problems (→ links with quantum computing)

which BENEFIT from interactions!

• As mentioned ... potential applications are ENDLESS!
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How to handle sparsity

Recall that the SDP- hierarchy is a
GENERAL PURPOSE METHOD ....

NOT TAILORED to solving specific hard problems!!
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How to handle sparsity

A remarkable property of the SOS hierarchy: I

When solving the optimization problem

P : f ∗ = min {f (x) : gj(x) ≥ 0, j = 1, . . . ,m}

one does NOT distinguish between CONVEX, CONTINUOUS
NON CONVEX, and 0/1 (and DISCRETE) problems! A boolean
variable xi is modelled via the equality constraint “x2

i − xi = 0".

In Non Linear Programming (NLP),

modeling a 0/1 variable with the polynomial equality constraint
“x2

i − xi = 0"
and applying a standard descent algorithm would be

considered “stupid"!

Each class of problems has its own ad hoc tailored algorithms.
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How to handle sparsity

Even though the moment-SOS approach DOES NOT
SPECIALIZE to each class of problems:

It recognizes the class of (easy) SOS-convex problems as
FINITE CONVERGENCE occurs at the FIRST relaxation in
the hierarchy.
FINITE CONVERGENCE also occurs for general convex
problems and GENERICALLY for non convex problems
→ (NOT true for the LP-hierarchy.)
The SOS-hierarchy dominates other lift-and-project
hierarchies (i.e. provides the best lower bounds) for hard
0/1 combinatorial optimization problems! The Computer
Science community talks about a META-Algorithm.
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How to handle sparsity

A remarkable property: II

FINITE CONVERGENCE of the SOS-hierarchy is GENERIC!

... and provides a GLOBAL OPTIMALITY CERTIFICATE.

Global minimizers are obtained from an optimal solution of the
SDP, via a simple linear algebra routine.
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How to handle sparsity

The no-free lunch rule ...

The size of SDP-relaxations grows rapidly with the original
problem size ... In particular:

• O(n2d) variables for the d th SDP-relaxation in the hierarchy

• O(nd) matrix size for the LMIs

→ In view of the present status of SDP-solvers ... only small to
medium size problems can be solved by "standard"
SDP-relaxations ...

→ .... How to handle larger size problems ?
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How to handle sparsity

Exploit SPARSITY in the data!

In general, each constraint involves a small number of variables
κ, and the cost criterion is a sum of polynomials involving also a
small number of variables. Recent works by Kim, Kojima,
Lasserre, Maramatsu and Waki

� Yields a SPARSE VARIANT of the SOS-hierarchy where
Convergence to the global optimum is preserved.
Finite Convergence for the class of SOS-convex problems.

� Can solve Sparse non-convex quadratic problems with
more than 2000 variables.
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How to handle sparsity

There has been also recent attempts to use other types of
algebraic certificates of positivity that try to avoid the size

explosion due to the semidefinite matrices associated with the
SOS weights in Putinar’s positivity certificate

Recent work by :
Ahmadi et al. � Hierarchy of LP or SOCP programs.
Lasserre, Toh and Zhang� Hierarchy of SDP with
semidefinite constraint of fixed size
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EXAMPLES
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How to handle sparsity

I. Approximation of sets with quantifiers

Let f ∈ R[x , y ] and let K ⊂ Rn × Rp be the semi-algebraic set:

K := {(x , y) : x ∈ B; gj(x , y) ≥ 0, j = 1, . . . ,m},

where B ⊂ Rn is a box [−a,a]n.

Suppose that one wants to approximate the set:

Rf := {x ∈ B : f (x , y) ≤ 0 for all y such that (x , y) ∈ K}

as closely as desired by a sequence of sets of the form:

Θk := {x ∈ B : Jk (x) ≤ 0 }

for some polynomials Jk .
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How to handle sparsity

Using Putinar’s positivity certificate one may build up a
hierarchy of SDPs whose sizes increase with d , and whose
optimal solution if the vector of coefficients of a polynomial
x 7→ J∗

d(x) of degree 2d .

Theorem (Lass)

The associated level set Θ∗
k := {x ∈ B : J∗

k (x) ≤ 0 } satisfies:

lim
k→∞

VOL(Rf \Θ∗
k ) = 0
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How to handle sparsity

Ex: Polynomial Matrix Inequalities: (with D. Henrion)

Let x 7→ A(x) ∈ Rp×p where A(x) is the matrix-polynomial

x 7→ A(x) =
∑
α∈Nn

Aα xα

(
=
∑
α∈Nn

Aα xα1
1 · · · xαn

n

)
.

for finitely many real symmetric matrices (Aα), α ∈ Nn.

... and suppose one wants to approximate the set

RA := {x ∈ B : A(x) � 0} = {x : λmin(A(x)) ≥ 0}.

Then:

RA =

x ∈ B : yT A(x)y︸ ︷︷ ︸
f (x ,y)

≥ 0, ∀ y s.t. ‖y‖2 = 1


Jean B. Lasserre semidefinite characterization
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How to handle sparsity

Illustrative example (continued)

Let B be the unit disk {x : ‖x‖ ≤ 1} and let:

RA :=

{
x ∈ B : A(x)

(
=

[
1 − 16x1x2 x1

x1 1 − x2
1 − x2

2

])
� 0

}

Then by solving relatively simple semidefinite programs, one
may approximate RA with sublevel sets of the form:

Θk := {x ∈ B : J∗
k (x) ≥ 0 }

for some polynomial J∗
k of degree k = 2,4, . . . and with

VOL (RA \ Θk ) → 0 as k → ∞.
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How to handle sparsity
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How to handle sparsity

II. Convex Underestimators of Polynomials

Consider the generic problem:

Compute a "tight" convex polynomial underestimator p ≤ f of a
non convex polynomial f on a box B ⊂ Rn.

� Very useful in large scale MINLP to compute efficiently
LOWER BOUNDS at the nodes of a BRANCH & BOUND
search tree (One minimizes the convex p instead of the
non-convex f ).

Message:

“Good" CONVEX POLYNOMIAL UNDERESTIMATORS can be
computed efficiently!
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How to handle sparsity

I: Characterizing convex polynomial underestimators
1 p(x) ≤ f (x) for every x ∈ B.
2 p convex on B → ∇2p(x) � 0 for all x ∈ B,

⇐⇒ uT∇2p(x)u ≥ 0, ∀(x,u) ∈ B × U,

where U := {u : ‖u‖2 ≤ 1}.

� Hence with d ∈ N fixed, one would like to solve:

min
p∈R[x]d

{ ‖f − p‖B under the two "Positivity constraints" :

f (x)− p(x) ≥ 0, ∀x ∈ B; uT∇2p(x)u ≥ 0, ∀(x,u) ∈ B×U }.

which as an optimal solution p∗ ∈ R[x]d , the best convex
polynomial underestimator of degree d .
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How to handle sparsity

Again, for fixed d , one may build up a hierarchy of SDPs whose
associated sequence of optimal solutions are polynomials
(p∗

` )`∈N, each of degree d , with p` ≤ f on B, and p∗
` is CONVEX

on B. Moreover:

Theorem (Lass & T. Phan Thanh (JOGO 2013))

p∗
` → p∗ ∈ R[x]d , as `→ ∞

→ Provides the best results in the comparison:

Guzman, Y. A; Hasan, M. M. F.; Floudas, C. A: Computational
Comparison of Convex Underestimators for Use in a
Branch-and-Bound Global Optimization Framework,
Optimization in Science and Engineering; Springer, 2014; pp
229-246.
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How to handle sparsity

III. Super Resolution

Suppose that an unknown SIGNED measure φ∗ (signal) is
supported on finitely many atoms (x(k))p

k=1 ⊂ K, i.e.,

φ∗ =

p∑
k=1

γk δx(k), for some real numbers (γk ).

The goal is to find

the SUPPORT (x(k))p
k=1 ⊂ K and WEIGHTS (γk )

p
k=1 from only

FINITELY MANY MEASUREMENTS (moments)

qα =

∫
K

xα dφ∗(x), α ∈ Γ.
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How to handle sparsity

Solve the infinite-dimensional LP

P : inf
φ
{ ‖φ‖TV :

∫
K

xα dφ(x) = qα, α ∈ Γ.

Univariate case on a bounded interval I ⊂ R: If the distance
between any two x(k)’s is sufficiently large then exact recovery
is obtained by solving a single SDP.

� Candès & Fernandez-Granda: Comm. Pure & Appl. Math.
(2013)
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How to handle sparsity

Writing the signed measure φ on I as φ+ − φ−, P reads

inf
φ+,φ−

∫
I
d(φ+ + φ−)︸ ︷︷ ︸

y0+z0

:

∫
I
xk dφ+(x)︸ ︷︷ ︸

yk

−
∫

I
xk dφ+(x)︸ ︷︷ ︸

zk

= qk , k = 1, . . . , r }

... again an instance of the GMP!

The dual P∗ reads: sup
p∈R[x]r

{ 〈p,q〉 : sup
x∈I

|p(x)| ≤ 1 }.

� As we are in the univariate case, both P and P∗ reduce to
solving a single SDP.
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How to handle sparsity

Extension to compact semi-algebraic domains K ⊂ Rn via the
moment-SOS approach: FINITE RECOVERY is also possible,
via a hierarchy of SDPs

� De Castro, Gamboa, Henrion & Lasserre: IEEE Trans. Info.
Theory (2016).
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How to handle sparsity

IV. Bounds on measures with moment conditions

Let K ⊆ Rn, S ⊂ K be Borel subsets, and Γ ⊂ Nn.

Finding an upper bound (if possible optimal) on Prob (X ∈ S),
the probability that a K-valued random variable X ∈ S, given
some of its moments γ = {γα}, α ∈ Γ ⊂ Nn ....

.... is equivalent to solving:

ρ = sup
µ ∈ M(K)

{ µ(S) |
∫

K
Xα dµ = γα, α ∈ Γ}

• M(K) is the (convex) set of probability measures on K ⊆ Rn.

• fα ≡ Xα, α ∈ Γ (polynomial); f0 = IS (piecewise polynomial)
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How to handle sparsity

Assume that Γ ⊂ Nn
d . Then the dual of P reads:

P∗ : ρ∗ = inf
pα

{∑
α∈Γ

pα γα : p ≥ 1 on S; p ≥ 0 on K

}

where p ∈ R[x]d is a polynomial

x 7→ p(x) =
∑
α∈Nn

d

pα xα; pα = 0 ∀α ∈ Nn
d \ Γ.

The moment-SOS approach: II. The (dual) SOS-side

� REPLACE the positivity constraints

p − 1 ≥ 0 on S; p ≥ 0 on K

with Putinar’s positivity certificates of increasing degree
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How to handle sparsity

� One ends up in solving the hierarchy of semidefinite
programs of increasing size, indexed by t ∈ N, and such that
the associated sequence of optimal values (ρt)t∈N converges to
ρ = ρ∗.
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How to handle sparsity

V. Computing the volume of semi algebraic sets

Let S ⊂ Rn be a compact basic semi-algebraic set. Let K be a
BOX [0,a]n containing S and let:

γα =

∫
K

Xα dx =
an+|α|∏n

k=1(1 + αk )!
, ∀α ∈ Nn

Theorem
The (Lebesgue) volume of the set S is obtained as:

sup
ν , ϕ

{
∫

S
1 dϕ :

∫
S

Xα dϕ+

∫
K

Xα dν = γα, α ∈ Nn}

� The unique optimal solution ϕ∗ is the Lebesgue measure
on S.
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How to handle sparsity

Same methodology

The only difference is that we now have COUNTABLY MANY
moments constraints

� Henrion D., Lasserre J.B., Savorgnan C. (2009)
Approximate volume and integration for basic semi-algebraic
sets. SIAM Review 51, pp. 722–743.
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How to handle sparsity

VI. Gaussian measures of semi-algebraic sets

Let µ be the Gaussian measure on Rn with density
x 7→ exp(−‖x‖2) and let K ⊂ Rn be the non necessarily
compact basic semi-algebraic set

K = {x ∈ Rn : gj(X ) ≥ 0, j = 1, . . . ,m }.

Goal:

Approximate µ(K) as closely as desired

� Can be difficult even in small dimension n = 2,3.
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How to handle sparsity

Theorem (Lass 2015)

Let f ∈ R[x] be strictly positive µ-a.e. on K, and let M(K) (resp.
M(Rn)) be the space of finite Borel measures on K (resp. Rn).
Then the optimization problem:

f ∗1 = sup
ν,φ

{
∫

K
f dφ : φ+ ν = µ; φ ∈ M(K), ν ∈ M(Rn) },

has a unique optimal solution (φ∗, ν∗) = (µK, µ− µK) where µK
is the restriction of µ to K, that is:

φ∗(B) = µK(B) = µ(K ∩ B), ∀B ∈ B(Rn).

In particular, φ∗(K) = µ(K), and f ∗ = µ(K) if f = 1.
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How to handle sparsity

Proof

From φ+ ν = µ one deduces φ ≤ µ and therefore

f ∗ ≤
∫

K
f dµ =

∫
f dµK.

On the other hand the pair (φ∗, ν∗) = (µK, µ− µK) is a feasible
solution with associated cost∫

K
f dφ∗ =

∫
f dµK,

which proves the optimality of (φ∗, ν∗).

Uniqueness is more delicate. Assume there is another optimal
solution φ, ν). From φ ≤ µ one deduces φ� µ and so by
Radon-Nykodim

φ(B ∩ K) =

∫
B∩K

g dµ ≤
∫

B∩K
dµ, ∀B ∈ B(Rn),

for some nonnegative measurable function g. Hence g ≤ 1,
µ-a.e. on K. Jean B. Lasserre semidefinite characterization
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On the other hand, by optimality of φ∗ and φ,

f ∗ =

∫
K

f dµ =

∫
f dφ∗ =

∫
f dφ

=

∫
K

f g dµ

which implies

0 =

∫
K

f (1 − g)dµ,

Combining this with f > 0 and g ≤ 1 µ-a.e. on K, yields g = 1,
µ-a.e. on K.

� This yields the desired result that φ = φ∗. �
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A dual view

A possible dual for the above LP is the LP:

ρ∗ = inf
p∈R[x]

{
∫

K
p dµ : p ≥ f on K; p ≥ 0 on Rn},

Indeed it trivially holds that ρ∗ ≥ f ∗.

A tractable version is obtained by replacing:

the "hard" positivity constraint p − f ≥ 0 on K, with the
positivity-on-K certificate

p − f = σ0 +
m∑

j=1

σj gj ; σj is SOS for all j}.

the "hard" positivity constraint p ≥ 0 on Rn with p is SOS.
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How to handle sparsity

so as to obtain the hierarchy of semidefinite approximations
indexed by d ∈ N:

ρ∗d = inf
p∈R[x]d

{
∫
Rn

p dµ : p − f = σ0 +
m∑

j=1

σj gj ; p, σj all SOS }

where the degree of the SOS p, σj is bounded by 2d .

Theorem (Lass 2015)
For every d ∈ N, ρ∗d ≥ f ∗ and ρ∗d → f ∗ as d → ∞.
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How to handle sparsity

One may do the same for the complement Kc := Rn \ K as
soon as one can write

Kc =

p⋃
i=1

Ωi ; µ(Ωi ∩ Ωj) = 0 ∀(i , j)

so that µ(Kc) =
∑p

i=1 µ(Ωi). In doing so one obtains for each
i = 1, . . . , p a sequence (θid)d∈N such that

p∑
i=1

θid ≥ µ(Kc) and lim
d→∞

p∑
i=1

θid = µ(Kc) = µ(Rn)− µ(K).

Theorem (Lass 2015)

With f = 1 one obtains µ(Rn)−
p∑

j=1

θid︸ ︷︷ ︸
ω∗

d

≤ µ(K) ≤ ρ∗d for all d,

and
lim

d→∞
ω∗

d = µ(K) = lim
d→∞

ρ∗d .Jean B. Lasserre semidefinite characterization
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How to handle sparsity

Examples

Let n = 2, and dµ = exp(−‖x‖2/σ)dx and let K be the
non-convex quadratic

x 7→ xT Ax = 0.56 x2
1 + 0.96 x1x2 − 1.24 x2

2 .

K = {(x , y) : (x − u)T A (x − u) ≤ 1} (non-compact),

with u = (0.1,0.5) and (0.5,0.1).

u = (0.5,0.1)
σ ρ∗9 ω∗

9 100 (ρ∗9 − ω∗
9)/ω

∗
9

1 2.829605 2.824718 0.17%
0.8 1.876731 1.876609 0.006%

u = (0.1,0.5)
σ ρ∗9 ω∗

9 100 (ρ∗9 − ω∗
9)/ω

∗
9

1 2.989832 2.986599 0.10%
0.8 1.969188 1.969103 0.004%
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How to handle sparsity

More details and (non-compact) examples in
arXiv:1508.06132.

Conclusion
Provides a sequence of converging upper and lower
bounds on µ(K) for non necessarily compact basic
semi-algebraic sets K.
A general methodology not set-K-dependent.
Also works for the exponential measure on the positive
orthant Rn

+, and in fact any measure µ provided that it
satisfies Carleman’s condition and one knows all its
moments.
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How to handle sparsity

... but of course ...
With rough basic implementation and present state-of-the-art
SDP solvers, one can obtain a few upper and lower bounds
only and for dimension n = 2 or n = 3. For d ≥ 15 numerical
accuracy problems show up.

� Some non-trivial tricks (based on Stokes’ formula)
permit to improve the quality of bounds.
� Much remains to be done for a better implementation
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How to handle sparsity

VII. Lebesgue decomposition in action

Given two measures µ and ν on Rn,

one would like to approximate the Lebesgue decomposition

φ+ ψ = µ; φ� ν; ψ ⊥ ν,

of µ with respect to ν.

... based on the sole knowledge of the moments

yα =

∫
Rn

xα dµ, zα =

∫
Rn

xα dν, α ∈ Nn.

of µ and ν.
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How to handle sparsity

By definition of φ and ψ:

φ has a DENSITY w.r.t. ν in L1(ν) (called the Radon-Nikodym
derivative of µ w.r.t. ν). That is, there exists a nonnegative
measurable function f ∈ L1(ν) such that:

φ(A) =

∫
A

f (x)dν(x), ∀A ∈ B(Rn).
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How to handle sparsity

CLAIM: If one assumes that :
f is in L∞(ν) (instead of L1(ν)), and ‖f‖∞ < M for some M,
Both moment sequences (yα) and (zα), α ∈ Nn satisfy
Carleman’s condition:

+∞ =
∞∑

k=1

(∫
X 2k

i dµ
)−1/2k

=
∞∑

k=1

(∫
X 2k

i dν
)−1/2k

for all i = 1, . . . , n.

THEN ... one may approximate as closely as desired
any fixed set of moments of φ and ψ.

Jean B. Lasserre semidefinite characterization



How to handle sparsity

CLAIM: If one assumes that :
f is in L∞(ν) (instead of L1(ν)), and ‖f‖∞ < M for some M,
Both moment sequences (yα) and (zα), α ∈ Nn satisfy
Carleman’s condition:

+∞ =
∞∑

k=1

(∫
X 2k

i dµ
)−1/2k

=
∞∑

k=1

(∫
X 2k

i dν
)−1/2k

for all i = 1, . . . , n.

THEN ... one may approximate as closely as desired
any fixed set of moments of φ and ψ.

Jean B. Lasserre semidefinite characterization



How to handle sparsity

CLAIM: If one assumes that :
f is in L∞(ν) (instead of L1(ν)), and ‖f‖∞ < M for some M,
Both moment sequences (yα) and (zα), α ∈ Nn satisfy
Carleman’s condition:

+∞ =
∞∑

k=1

(∫
X 2k

i dµ
)−1/2k

=
∞∑

k=1

(∫
X 2k

i dν
)−1/2k

for all i = 1, . . . , n.

THEN ... one may approximate as closely as desired
any fixed set of moments of φ and ψ.

Jean B. Lasserre semidefinite characterization



How to handle sparsity

A hierarchy of semidefinite approximations

Denote the moments of µ and ν by:

µα =

∫
xα dµ, να =

∫
xα dν, α ∈ Nn.

Let γ > 0 be fixed, and consider the hierarchy of semidefinite
programs Pd indexed by d ∈ N:

Pd : ρd = sup
y ,u,v

y0

s.t. yα + uα = µα, ∀α ∈ Nn
d

yα + vα = γ να, ∀α ∈ Nn
d

Md(y), Md(u), Md(v) � 0

Jean B. Lasserre semidefinite characterization



How to handle sparsity

Let φ∗ and ψ∗ be the Lebesgue decomposition of µ w.r.t. ν, and
let f ∗ ∈ L1(ν) be the density of φ∗ w.r.t. ν.

Theorem (Lass 2015)
(i) For each d ∈ N, the semidefinite program has an optimal
solution (yd ,ud , vd).

(ii) Moreover as d → ∞, the triplet of sequences (yd ,ud , vd)
converges to some triplet of sequences (y∗,u∗, v∗) where

y∗
α =

∫
xα (γ ∧ f ∗) dν =

∫
xα f ∗γ dν, ∀α ∈ Nn.

with ‖f ∗γ ‖∞ ≤ γ.

(iii) So if f ∗ ∈ L∞(ν) with ‖f ∗‖∞ ≤ γ, then

y∗
α =

∫
xα dφ, ∀α ∈ Nn.
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How to handle sparsity

Examples

Let n = 2, p ∈ (0,1) and
ν is the Gaussian with density x 7→ exp(−‖x‖2),
θ is the measure uniformy distributed on the circle
{x : x2

1 + x2
2 = 1}.

Define the measure µ to be

µ = p ν + (1 − p) θ,

so that the Lebesgue decomposition of µ w.r.t. ν is
(φ, ψ) = (p ν, (1 − p) θ).
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How to handle sparsity

The table below show relative error between the approximate
moments u = (uα) of degree 2 and 4, of the singular part ψ and
those of p θ computed with moments up to order 2d = 14.

approx. moments x2
1 x4

1 x2
1 x2

2 Lud ((x2
1 + x2

2 − 1)2)

p=0.1 0.19% 0.52% 0.53% 0.001
p=0.2 3.7% 8.12% 12.14% 0.16

Same thing but now with ν being uniformly supported on the
unit box [−1,1]n.

approx. moments x2
1 x4

1 x2
1 x2

2 Lud ((x2
1 + x2

2 − 1)2)

p=0.1 0.26% 0.93% 0.61% 0.0001
p=0.2 8.8% 10.2% 7.5% 0.08
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