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Perception — Geometry — Control
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http://www.youtube.com/watch?v=tiwVMrTLUWg&t=530

Manipulation: Making and Breaking Contact Optimally
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http://www.youtube.com/watch?v=R2kEi_KKSsA

Virtual Reality: Blending Reality and Simulation

By Erwin Coumans (Google Brain)
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http://www.youtube.com/watch?v=VMJyZtHQL50
http://bulletphysics.org/wordpress/

High Level Perspectives

e Understanding Geometric Proximity relationships between the robot and the

environment in real-time.
o Search — Perception — Embodiment
m Human-machine physical contact is a profound paradigm shift
o Safety Guarantees are very important - huge difference from search.
e Key Concepts from Sum-of-Squares Optimization
o Search for convex and near-convex polynomials whose sublevel sets tightly contain 3D regions.
m SOS-Convexity and generalizations of the Lowner-John Minimum ellipsoid problem.
e Focus on small-scale but potentially real-time Semidefinite Programming
o How practical is SOS programming, given its scalability challenges, in this context, where n=3?
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Perception — Geometry — Control
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Perception — Geometry — Control
T

min Z cr(xy, ug) + cr(zr)

UQ,... UT
’ t=0

subject to:

Li+1 — f(iUta Ut)

distance(S;  (x), 5] ) >= safety-margin

Probot

e Nested optimization, possibly MPC style to handle dynamic environment
e Convexity of bounding volume
Google e Need generalized notions of distance that allow penetration
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A Collection of Geometry Problems for Robot Control

Depth Camera — 3D Point Cloud — Bounding Volume (BV)
o  Describe Robot body & Environment (“mid-level” vision) Original Mesh St R
o  Tight Containment and Minimum Volume REIEIEIaN
o  Fast Construction Time (e.g., new objects appear) X ‘
o  Fast Reconstruction upon Rigid body motion
e Distance and Collision Queries for Path Planning
o  Pointto BV (e.g., Is a specific voxel safe?)
o  Distance between bounding volumes for Trajectory Optimization
o  Handle overlaps, i.e., Measure of Penetration, e.g., “penetration depth”
e Handling Non-convexity
o  Convex Decomposition of Objects
o  Tradeoff level of convexity of BV with tightness
e Outer-approximate a set of BVs with a single convex BV.
o  Can be used to define a BV Hierarchy (coarse-to-fine representation)

o  Convexification of a nonconvex body
e Several others, e.g. Chebyschev Centers (e.g., safest points, in conjunction with convex decomposition of free space)

From: https://github.com/kmammou/v-hacd
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Geometry of 3D Environments and SOS Programming

e Define Bounding Volumes using sublevel sets of SOS polynomials.
o  SOS formulation gives effectives heuristics for minimizing volume
o Impose Convexity on sublevel sets via SOS-Convexity

e Nonnegative Polynomials and SOS sufficient condition

anx >0VaeeR" < px Zqz ()7 Qz(x),Q =0

e (Convex Polynomlals and SOS-Convex sufficient condltlon.
Vep(z) = 0V 2 € R" <= y' Vp(a)y = 2(z,y)" Qz(z,y),Q = 0

o  Complete characterization of the Gap (Ahmadi and Parrilo, 2012): “the remarkable outcome is that convex
polynomials are sos-convex exactly in cases where nonnegative polynomials are sums of squares..."

e SOS Bodies & SOS-Convex Bodies:
= {z ¢ R?|p(x) < 1} p sos, or, sos-convex
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Minimum Volume SOS-Convex Bodies

Generalization of Minimum Volume Ellipsoids (Lowner-John Problem)
e  Our Formulation

Maximum Curvature Formulation

([
Magnani, Lall and Boyd, 2005

min  —log det(H) min —log det(P)
PER2q[x], HESN XN pERgg[z],PESN XN
subject to: subject to:
p=z(x)'Pz(x), P=0 p(z) = z(z)" Pz(z), P =0
y' Vep(z)y = w(w,y) Hu(z,y), H =0

y' ' Vp(z)y = w(z,y) Hw(z,y), H >0 |
plz)<1l,i=1,....,m plzi) <li=1,....,m

Both exact for quadratic case (2d=2).

[
Both heuristic for higher (2d>=4), and note curvature might be maximized in directions of no data.
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Justification

p(z,y) = z(z,y) Qz(z,y), Q=0
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An SoS-Convex Chair

Degrees 2,4, 6
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Visual Comparison with Maximum Curvature Heuristic




Relaxing Convexity

e |[nverse Moment Matrix Formulation
o Lasserre and Pauwels, 2015

p(x) = z(x) Myz(x)

~1
1 m
= | = i i)’
M=— ;—1:2(3? )2 ()

Very fast and effective single pass method
Minimizes average value on the point cloud, but
not the volume explicitly.

o  Sublevel-set value needs to be tuned for point
cloud containment.

o Nodirect control over level of convexity.
Google

e Our Formulation

min —log det(P)

pERQd[ZIﬁ],PESNXN

subject to:
p(z) = z(z)! Pz(x), P =0
p(x) — C(Z r7) sos-convex

ple;)) <l,0=1,....,m
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SoS Chairs with relaxed convexity

c=0,-10,-100 (degree = 6)
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Visual Comparison with Inverse Moment Approach

degree 6, c=-100




CONVEX

NON-CONVEX

Bounding Volume Effectiveness

Object — Human Chair Hand Vase Octopus
Bounding Body | | id:#tvertices | 10:9508 | 101:8499 | 181:7242 | 361:14850 | 121:5044
Convex-Hull 029 (364) | 0.66 (320) | 0.36 (652) | |0.91 (1443) | 0.5 (414)
Sphere 374 373 3.854 3.91 4.1
AABB 0.59 1.0 0.81 1.73 128
. logdet 0.58 1.79 0.82 1.16 1.30
SEER trace 0.97 1.80 1.40 12 1.76
logdet(H 1) 057 1.55 0.69 1.13 1.04
trace(H~1) 0.56 2.16 1.28 1.09 3.13
4
sowcovex @) | seadei(e—1) 0.44 1.19 053 1.05 0.86
trace(P—1) 0.57 1.25 0.92 1.09 1.02
logdet(HY) [ 057 127 0.58 1.09 093 |
sos-convex (6) trace(H—l) 056 130 057 109 OR7
logdet(P~1) | | 041 1.02 045 0.99 074 |
trace(P—1) 045 | 043 .03 0.79
Inverse-Moment (2) 4.02 1.42 2.14 1.36 1.74
Inverse-Moment (4) 1,53 0.as 0.0 125 n7s
Inverse-Moment (6) 0.48 0.54 0.58 1.10 0.57
pr— logdet(P— 1) 0.38 0.72 042 1.05 0.63
sm (=1, =10 | irace@=) 0.51 0.78 048 111 0.71
- logdet(P—1) 0.35 0.49 0.34 0.92 041
508 (@5, c=10) | a1y 037 0.56 0.39 0.99 0.54
. logdet(P—1) 0.36 0.64 0.39 1.05 0.46
sox (@4, =100 | trace(P—) 0.42 0.74 046 1.10 0.54
_ logdet(P—1) 0.21 0.21 0.26 0.82 0.28
B (=6, e=100) | e 1) 0.22 0.30 0.29 0.85 037

TABLE I: Comparison of various bounding volume techniques
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200

Construction Time

—&— inv-mom [Lasserre and Pauwels, 2016] ','0

i —&— |ogdet(P E )[proposed in this paper] ,/ |

160 { — = ~trace(P ~') [proposed in this paper] /-

o YALMIP +SCS/ADMM 1 L logdet(H "1) [Magnani et al, 2005] ,// ]
o 2500 iterations e ~trace(H -1) P
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DEGREE

e Note: One-time SOS solution - if 3D body represented by p(x)<=1, rotates,

translates by (R, t), then p(R'x - R't) is the new representation.
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Euclidean Distance between SOS-Convex Bodies

e Distance Computation via Convex
Optimization

- 2
pesin |z — yl3

e Near real-time performance with a
general-purpose interior-point convex
optimizer.

o Many optimizations possible.

degree 2 4 6 8
time (secs) 0.08 0.083 0.13 0.34
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Growing and Shrinking SOS Chair

Level sets: 2,1,0.75
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New Measures of Separation and Penetration

d(pl | |p2) = min F i (ZB ) e if d(p1||p2) > 1, the bounding volumes are separated.
o if d(p1||p2) = 1, the bounding volumes touch.

S.t. pz(ﬂ;' ) S 1. e if d(p1||p2) < 1, the bounding volumes overlap.




Real-time Performance

30 T T T
—&— p1:chair, p2:human
—&—p1:human, p2:chair

Growth Distance
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Translation of the Chair (Left to Right)
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Containment of Polynomial Sublevel Sets

e Convexification
e BVH: Coarser representations

min — log det(P)
pPER24[z], T ER, 3[z], PESN XN

S.I.

p(z) = z(z)T Pz(z), P = 0,

p(z) sos-convex,

1—p(z)— Zﬂ;(m)(l — gi(z)) sos,

7:(x) sos, i=L,....m.
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Summary

e Sum of Squares Optimization is practical for an important class of 3D

Geometry Problems in Robotics

o Introduced a new effective bounding volume technique based on SOS-Convexity
o Small SDPs in this context can be solved fast - stable upto degree 8.

e Constructing 3D representations from real streaming RGBD datasets

e Study interplay between geometry and optimization
o Integrating such representations with Optimal Control
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