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Motivation 1: SysId 

Goal:  Find a low order, stable model 



Motivation 2: distributed sensing & control 

Goal:  impose a sparse structure 



Motivation 3: decision making 

How do we make (provably) correct decisions in a “data deluged” 
environments?    (a hidden hybrid SysId problem) 



Hard or Easy? 

 
!! Claim 1:  These problems are (NP!) hard 
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!! Claim 2:  These problems can be solved in polynomial 
time 
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!! Claim 1:  These problems are (NP!) hard 

 

!! Claim 2:  These problems can be solved in polynomial 
time 

 

Both can’t be right, can they? 



Hard or Easy? 

 
!! Claim 1:  These problems are generically NP-hard 

 

!! Claim 2: Many of  these problems can be solved in 
polynomial time 

 



Hard or Easy? 

!! Q:  What makes a problem easy? 

!! A:  Convexity? 
 

 



Hard or Easy? 

!! Q:  What makes a problem easy? 

!! A:  Convexity?  Not Necessarily! 

      Optimization over co-Positive matrices is NP-hard 
 

 



Hard or Easy? 

!! Q:  What makes a problem easy? 

!! A:  Convexity + Self-Concordance?   

 



Hard or Easy? 

!! Q:  What makes a problem easy? 

!! A:  Convexity + Self-Concordance?  Not Necessarily! 
 

 

In (convex)  SysId Big Data may be as low as 102 

Horizon ADMM (secs) SDP solver(secs)
280 1071.8 4177.0
350 1828.0 12686.9
420 2657.7 out of memory



Hard or Easy? 

!! Q:  What makes a problem hard? 

!! A:  Lack of Convexity?   

 



Hard or Easy? 

!! Q:  What makes a problem hard? 

!! A:  Lack of Convexity?  Not Necessarily! 
 

 

 Non-convex but  solving for 100000 
variables takes 50 secs on a Mac 

min
X

cixixi+1 subject to xi = ±1



Hard or Easy? 

!! Q:  What makes a problem hard/easy? 

!! A:  Structure 
–! Self Similarity  
–! Sparsity 
  

!!  Both observed in many practical problems 
–! Often they induces “good” convexity 
–! Exploited in Machine Learning for “static” problems 

 



Hard or Easy? 

 
!! Challenge 

–! Separate easy/hard problems 
–! Understand where does the complexity come from 
–! Use this understanding to design “easy” problems 

 

Main point of this talk: These issues are related 
to the sparsity structure of the problem 
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p⇤ =min
x

Trace(Q

o

xx

0
) s.t.Trace(Q

i

xx

0
)  0 i = 1, ..n

p⇤ =min
x

x

0
Q

o

x s.t. x0
Q

i

x  0 i = 1, ..n

p
SDP

=min
x

Trace(Q
o

X) s.t.Trace(Q
i

X)  0, X ⌫ 0

 
Clearly                  and                    if rank(X)=1  pSDP  p⇤ pSDP = p⇤
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Clearly                  and                    if rank(X)=1 
 
 
Q:  Can we get this  for (almost) free?  

pSDP  p⇤ pSDP = p⇤



Polynomial Optimization Exploiting sparsity in QCQP 

X2 X1 
X3 

!! Complexity related to the topology of a graph: 
–! Each vertex corresponds to a variable 
–! There is an edge (i,j) if there are terms involving xixj 

 

 
 
 
 
 
 
 
  

 
 

 
 



Polynomial Optimization 

X2 X1 
X3 XN 

!! If the graph is a tree, then the SDP relaxation is exact 
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Exploiting sparsity in QCQP 



Polynomial Optimization 

!! If the graph is a tree, then the SOCP relaxation is exact 
 
!!   Example:    
 
 
 
 
 
 
  

 
 

 
 

Solving for 100,000 variables takes  50 secs on a Mac 
Structure and Sparsity Matter 

Exploiting sparsity in QCQP 

X2 X1 
X3 XN 

min
X

cixixi+1 subject to xi = ±1



 
 
x1,x2,..xk..xd,xd+1,!xd+k,!!!!xn-d+1,xn 

!! Many problems have a sparse structure (running intersection) 

 
 
 
 
 
 
    where each pi(.), fi(.) depends only on a subset of variables such that 

 

 

 
 

Polynomial Optimization Sparse polynomial optimization 
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Sparse polynomial optimization 
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Polynomial Optimization 
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Sparse polynomial optimization 



Polynomial Optimization Sparse polynomial optimization 

!! Running intersection is related to cliques in the (chordal 
completion of the)  csp graph 

 
 

 
 



Polynomial Optimization Sparse polynomial optimization 

Size of the running intersection is given by the tree width 

!! Running intersection is related to cliques in the (chordal 
completion of the)  csp graph 

 
 

 
 



Polynomial Optimization Sparse polynomial optimization 

Complexity dominated by the size of the clique, not the size of the problem  

!! Running intersection is related to cliques in the (chordal 
completion of the)  csp graph 

 
 

 
 



Connecting Information, Sparsity & Dynamics 



Where should we pay attention?:    

Features (edges, regions, etc.) are important. 



Where should we pay attention?:    

Dynamics are important too!. 



!! Strong prior: 
–! Signal has a sparse 

representation 

 
 only a few ci ! 0 
 

!! Signal Recovery: 
–! “sparsify” the coefficients 

 
 

 
 

Sparse signal recovery: 



!! Strong prior: 
–! Signal has a sparse 

representation 

 
 only a few ci ! 0 
 

!! Signal Recovery: 
–! “sparsify” the coefficients  

 
 
 

:  
 

Sparse signal recovery: 

!! Strong prior: 
–! Actionable information is  

generated by low complexity 
dynamical systems. 

 
 

!! Information extraction: 
–! “sparsify” the dynamics 

–! Where M(.), E(.) are affine in y  

 
 

Sparse information extraction  

min
y

{rank[M(y)] + �kE(y)k
o

}



time 

 Example: Solving “Temporal Puzzles” 



 Example: Solving “Temporal Puzzles” 

min

c
kck1 subject to:

v = Dc

kPy � vk  ✏

P 2 P

D is a suitably chosen 
dynamic dictionary 

y v 



Dynamic 
sparsification 

 Example: Solving “Temporal Puzzles” 



Information Extraction as an ID problem 



 
–! Model  data streams as outputs of switched systems 
–! “Interesting” events ! Model invariant(s) changes  
–! An identification/model (in)validation problem. 
 

Information extraction as an Id problem: 

u 
G(!) 

y 

features, pixel values, ! 



SARX Id problem: 

!! Given: 
–! Bounds on noise (||"||# $%), sub-system order (no) 
–! Input/output data (u,y) 
–! Number of sub-models 
 

!! Find: 
–! A piecewise affine model such that: 

 

u y 

G!t 
" 



!! Given N points in Rn, fit them to hyperplanes 
 
!! “Chicken and egg” problem 

–! Do not known the point “labels” 
–! Do not know the hyperplanes. 
 

  
  

Piecewise Affine (PWA) Systems Id problem 

NP Hard ! 
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A  hidden QCQP problem 

 Reformulation: 
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Piecewise Affine (PWA) Systems Id problem 

and 

Subject to: 
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   s 2 {0, 1}



Piecewise Affine (PWA) Systems Id problem QCQP reformulation: 



Piecewise Affine (PWA) Systems Id problem QCQP reformulation: 

xj is an inlier in Si if sij = 1



Piecewise Affine (PWA) Systems Id problem QCQP reformulation: 

xj is an inlier in Si if sij = 1

sij 2 {0, 1}



Piecewise Affine (PWA) Systems Id problem QCQP reformulation: 

xj is an inlier in Si if sij = 1

sij 2 {0, 1}

each sample is assigned

to one subspace



Piecewise Affine (PWA) Systems Id problem QCQP reformulation: 

xj is an inlier in Si if sij = 1

sij 2 {0, 1}

each sample is assigned

to one subspace

Solvable using SoS / Moments 
techniques 



Polynomial Optimization  Hidden Sparse Structure: 

s2 s1 
s3 sN 

Model parameters  

s1,t(yt + ⌘t �
naX

i=1

Ai(�1)yt�i �
ncX

i=1

Ci(�1)ut�i) = 0



Polynomial Optimization 

s2 s3 sN 

Complexity determined  by the order 
of the model.  

s1 

 Hidden Sparse Structure: 

Linear in the number of data points 



Polynomial Optimization  Exploiting the Sparse Structure: 

Reduced problem: 
Scales as O(Np(Ns)6) 

 

Original problem: 
Scales as  O((NpNs)6) 

Linear in the number of data points 



Polynomial Optimization  Exploiting the Sparse Structure: 

Reduced problem: 
Scales as O(Np(Ns)6) 

 

Original problem: 
Scales as  O((NpNs)6) 

Caveat: still need to deal with a rank constraint 



Example: Human Activity Analysis 

WALK BEND WALK 



(In)Validating SARX Models 



!! Given: 
–! A nominal switched model of the form: 

–! A bound on the noise (||"||# $%) 
–! Experimental Input/Output Data  

!! Determine: 
–! whether there exist noise and switching sequences 

consistent with a priori information and experimental data   

 Data  

Model (In)validation of SARX Systems 
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 Data  

Reduces to SDP via   
Putinar’s Positivstellensatz  
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–! A bound on the noise (||"||# $%) 
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!! Determine: 
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consistent with a priori information and experimenta data   

 Data  

Reduces to SDP via   
Putinar’s Positivstellensatz  
 

Model (In)validation of SARX Systems 

Guaranteed convergence 
for the n=T relaxation 



 (In)validation Certificates: 

!! The model is invalid if and only if 
 

  
 
 
 

 

d⇤
.
=

8
>>>>>><

>>>>>>:

mins,⌘
PT

t=1

Pns

i=1 e
2
i,t

subject to:

si,t(gi,t + hi,t⌘t�na:t) = ei,tP
i si,t = 1

s2i,t = 1

k⌘k1  ✏

9
>>>>>>=

>>>>>>;

> 0



Hidden sparse structure 
similar to the Id case  

Model (In)validation of SARX Systems 

Complexity dominated by 
the order of the model  

Noise from t to t-n  

s2 s1 
s3 sN 



Example: Activity Monitoring 

•! A priori switched model: walking and waiting, 4% noise 

•! Test sequences of hybrid behavior: 

WALK, WAIT RUN WALK, JUMP 

Not Invalidated Invalidated Invalidated 



 Adding topological constraints: 

!! The model is invalid if and only if 

 
plus additional linear constraints: 
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These destroy sparsity patterns! 



Example: Activity Monitoring 

A Priori information 

Invalidated  (d=0.175) 

Not Invalidated  (d=-3e-8) 
run 

walk 



Identifying Sparse Dynamical Networks 



Who is in the same team? 
Who reacts to whom? 



Each time series becomes a node in a graph 

Formalization as a graph id problem: 

Each edge is a dynamical system 

= + + a1 a2 

? ? 



A Sparsification Problem: 

•! Find  block sparse solutions to: 

•!Efficient solutions using atomic norm minimization 
 
•!Atoms are the time series at other nodes 

•! Projection free Frank-Wolfe algorithm 
 
 



Algorithm 

Frank-Wolfe Algorithm!
1: Initialize: 
                         for arbitrary 
2: for                       do 
 
3: 
 
4: 
 
5: 
 
6: end for 

                         for arbitrary 
2: for                       do 

Converges as O(1/n) 
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                         for arbitrary 
2: for                       do 
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Algorithm 

Frank-Wolfe Algorithm!
1: Initialize: 
                         for arbitrary 
2: for                       do 
 
3: 
 
4: 
 
5: 
 
6: end for 

                         for arbitrary 
2: for                       do 

Closed form solutions to each step 



Example  

 Interactions between human agents 



More examples: 



 Tracking by detection 

Reduces to an assignment problem with “dynamics- induced” weights 

rank(Hi)+rank(Hj)
rank([Hi Hj ])

� 1



t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10 

time 

 Crowd photography sequencing 



Polynomial Optimization  More examples where sparsity & self similarity help 

!! Semi-supervised  SysId 

!! Wiener systems identification 

!! Identification with outliers 

!! Identification of PWA systems 

!! (In)validation of PWA systems 

!! Sparse network Id. 

!! Optimal sensor placement 

!! Controller design subject to sparsity constraints 

 

 
 
 

 
 

All of these are known to be NP-hard, yet often solvable in polynomial 
time using sparsity based convex relaxations 



What is Big Data? 
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Computational complexity is related to data 
interconnectivity, not data size!! 

What is Big (Dynamic) Data? 
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 Easy  Hard 

Related to max clique size of an underlying graph 



 
  
 
!! Challenge: how to build in and exploit the “right” sparsity 

–! Graphs with small tree width  (network design) 
–! Low order models 

!! Submodularity also helps  

–! what other properties can we exploit? 

!! An interesting connection between several communities:  
–! Control,  semi-algebraic optimization, machine learning,…. 

Sparsity can provide a way  
around the curse of dimensionality  

Big Data & Sparsity: 
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Big Data & Sparsity: 



SoS for “real sized” problems : 

 
!! Many promising advances towards making SoS/Moments 

practical: 
–! ADMM,  Frank-Wolfe,  Factorizations 

!! Empirical experience: force M to be rank 1 
In many practical problems (e.g. subspace clustering) forcing a small 
matrix (much smaller than the running intersection) to have rank 1 
guarantees rank(M)=1 

 
!! New developments covered elsewhere in this workshop 

–! Ahmadi & Hall:  DSoS and SDSoS 
–! Lasserre:  Krivine+Putinar P-satz  (LP+fixed size SDC) 

!! Getting there, but more work needed. Keep tuned for 
more 
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