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Motivation 1: Sysld

| Goal: Find a low order, stable model |




Motivation 2: distributed sensing & control
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| Goal: impose a sparse structure
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Motivation 3: decision making
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How do we make (provably) correct decisions in a “data deluged”
environments? (a hidden hybrid SysId problem)




Hard or Easy?

e Claim 1: These problems are (NP!) hard
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Hard or Easy?

e Claim 1: These problems are (NP!) hard

e Claim 2: These problems can be solved in polynomial
time

Both can’t be right, can they?




Hard or Easy?

e Claim 1: These problems are generically NP-hard

e Claim 2: Many of these problems can be solved in
polynomial time



Hard or Easy?

e Q: What makes a problem easy?

e A: Convexity?



Hard or Easy?
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e Q: What makes a problem easy?
e A: Convexity? Not Necessarily!

Optimization over co-Positive matrices is NP-hard



Hard or Easy?
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e Q: What makes a problem easy?

e A: Convexity + Self-Concordance?



Hard or Easy?

&

e Q: What makes a problem easy?

Convexity + Self-Concordance? Not Necessarily!

o A:
Horizon | ADMM (secs) | SDP solver(secs)
280 1071.8 4177.0
350 1828.0 12686.9
420 2657.7 out of memory

|In (convex) Sysld Big Data may be as low as 102 |




Hard or Easy?
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e Q: What makes a problem hard?

e A: Lack of Convexity?



e Q:
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Hard or Easy?
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What makes a problem hard?

Lack of Convexity? Not Necessarily!

minz ciXiXj+1 subject to x; = +1

Non-convex but solving for 100000
variables takes 50 secs on a Mac




Hard or Easy?
[

e Q: What makes a problem hard/easy?

e A: Structure
- Self Similarity
- Sparsity

e Both observed in many practical problems

- Often they induces “"good” convexity
- Exploited in Machine Learning for “static” problems



Hard or Easy?

e Challenge
- Separate easy/hard problems
- Understand where does the complexity come from
- Use this understanding to design “easy” problems

Main point of this talk: These issues are related
to the sparsity structure of the problem




Intuition: look at QCQP

p* =minx'Qex 5.t. xX’Qix<07=1,..n
X

Il

p* =min Trace(Qoxx’) s.t.Trace(Qixx') <0i=1,..n

Il

pspp =min Trace(Q,X) s.t.Trace(Q;X) <0, X >0

Clearly pspp < p* and PsDP =P if rank(X)=1



Intuition: look at QCQP

p* =minx'Qex 5.t. xX’Qix<07=1,..n
X

Il

p* =min Trace(Qoxx’) s.t.Trace(Qixx') <0i=1,..n

Il

pspp =min Trace(QoX) s.t.Trace(Q;X) <0, X >0
Clearly pspp < p* and PsDP =P if rank(X)=1

Q: Can we get this for (almost) free?



Exploiting sparsity in QCQP

e Complexity related to the topology of a graph:
- Each vertex corresponds to a variable
- There is an edge (i,j) if there are terms involving Xx;x;



Exploiting sparsity in QCQP

X X3 X3 Xy

e If the graph is a tree, then the SDP relaxation is exact

J. Lavaei, 2014




Exploiting sparsity in QCQP

X X3 X3 Xy

e If the graph is a tree, then the SOCP relaxation is exact

e Example: mianiXiXi+1 subject to x; = 1

Solving for 100,000 variables takes 50 secs on a Mac
Structure and Sparsity Matter




Sparse polynomial optimization

e Many problems have a sparse structure (running intersection)

rricinpl () + p2(x) + ...pm(z) s.t.

fi(z®) <0
fa(z%) <0

fm(z%) <0
where each p;(.), f;(.) depends only on a subset of variables such that

P,
f

X1,x2,--Xk--Xd,Xd+1,---Xd+k, ------------ Xn_d+1’xn



Sparse polynomial optimization

e Many problems have a sparse structure (running intersection)

H%ci pa(x) + ... pm(x) s.t.

fm(aja) <0

where each p;(.), f;(.) depends only on a subset of variables such that

P,
f

d+,,...xd+k, ............ X, ge1:X;n



Sparse polynomial optimization

e Many problems have a sparse structure (running intersection)

m1np1 ‘ —|— s.t.

fi(x®

Gy

fm(aja) <0

where each p;(.), f;(.) depends only on a subset of variables such that




Sparse polynomial optimization

e Running intersection is related to cliques in the (chordal
completion of the) csp graph




Sparse polynomial optimization

e Running intersection is related to cliques in the (chordal
completion of the) csp graph

Size of the running intersection is given by the tree width




Sparse polynomial optimization

e Running intersection is related to cliques in the (chordal
completion of the) csp graph

Complexity dominated by the size of the clique, not the size of the problem




Connecting Information, Sparsity & Dynamics




Where should we pay attention?:

Features (edges, regions, etc.) are important.



Where should we pay attention?:

Dynamics are important too!.



Sparse signal recovery:

e Strong prior:

- Signal has a sparse
representation

f=> cabi

onlyafewc # 0

e Signal Recovery:
- “sparsify” the coefficients

min||[c1, -, cnlllo
subject to : f(x;) = y;




Sparse information extraction

e Strong prior:

- Actionable information is
generated by low complexity

- jm\ _— dynamical systems.
i = . G,

e Information extraction:
- “sparsify” the dynamics

N min{rank{M(y)] + A|E(y) .}

subject o : F(a1) = - Where M(.), E(.) are affine in y

min|



Example: Solving “"Temporal Puzzles”

\ 4

time



Example: Solving “"Temporal Puzzles”

min||c||; subject to:
C

h . * |:> v = Dc

[Py —v|| <e
Y PePpP
y v

D is a suitably chosen
dynamic dictionary



Example: Solving “"Temporal Puzzles”

Dynamic
sparsification




Information Extraction as an ID problem

§



features, pixel values, ...

- Model data streams as outputs of switched systems
- “Interesting” events <« Model invariant(s) changes

- An identification/model (in)validation problem.




SARX Id problem:

e Given:
- Bounds on noise (]|n||.. =€), sub-system order (n,)
- Input/output data (u,y) or€1l,...,5

- Number of sub-models

u 1 y
e Find: ::l Gat ‘
n

- A piecewise affine model such that:

ye = Y g ai(o)yi—i + > ieq cilo)ui—i + (o) + me

! *

0 = blo)lri+m

O



e Given N points in R", fit them to hyperplanes

e "Chicken and egg” problem
- Do not known the point “labels” NP Hard !
- Do not know the hyperplanes.




Reformulation:

A hidden QCQP problem




QCQP reformulation:




o

QCQP reformulation:

N,
([3i517 ] <55%3=Vz—1v3 =1
2 N,
S ,j S?':J’v% lvj =1

NS — NP
Linsig =1V
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QCQP reformulation:

N,
([3i517 ] <€S%J?vz—1v3 =1
2 N,
S ,j S?’:J’v‘% 1vj =1

NS — NP
Linsig =1V

x;is an inlier in §; if 5;; =1




o

QCQP reformulation:

N,
([3i517 ] <€S%J?vz—1v3 =1
2 N,
S ,j S?’:J’v‘% 1vj =1

NS — NP
Linsig =1V

x;is an inlier in §; if 5;; =1

si; €10,1}




QCQP reformulation:

o

N . R ) .
|SHr X;| < ES”,vi_le 2 x;is an inlier in S; if s;; = 1
2 N
S :j 83337 v% 1VJ 1 S’I,] e {07 1}
N each sample is assigned
E,LN_SISH = 1 \:f P b &

to one subspace




QCQP reformulation:

o

N, . c e .
|SHr X;| < ES”,vi_le 2 x;is an inlier in S; if s;; = 1
2 N,
S :j 83337 v% 1VJ 1 S’I,] 6 {07 1}
Ve o =1y each sample is assigned
i=154,]
to one subspace
T, _ N
rir, =1V

Solvable using SoS / Moments
techniques




Hidden Sparse Structure:

Model parameters




Hidden Sparse Structure:

o Complexity determined by the order
O ® Q of the model.

o/®° l

Linear in the number of data points




Exploiting the Sparse Structure:

(

P(]:

NP
VJ=1

Original problem:
Scales as O((N,N,)?)

T — 1 \Ns

r1(1)

:Pj:<

>19(1) 2+ 21y, (1) 20

(o N,
181,577 Xj| < €835, ¥,
2

_ N
5i7 = Sij Vict

Ne o _
kE' 1%4,5 = 1

1=

g

Reduced problem:
Scales as O(N,(N,)¢)

(Tr(Qr,oMo) < 0,¥,,
M, ~ 0, MO(la 1) =1
< rank(M;) =1
(Tr(Qk,ij) <0, VkKil
Var M = 0, M (1,1) = 1
| M;(1: 0N, +1,1:nN, +1) = M,

\

Linear in the number of data points




Exploiting the Sparse Structure:

Original problem: Reduced problem:
Scales as O((N_N,)®) E Scales as O(N,(N,)®)
( T. _1 yNs - ("Tr(Qr oMp) < 0, X0
P I, Iy = ]'Svi:l B BOTE07 =5 Yk=1
0 : u =
ri(1) 2rp(1) >+ >y, (1) 20 Mnk‘r(* 0~;Vln(1. 1)=1
) T N, - J rank(M,) =1
\ N |Si,jrz’ Xj| < Esi:jtvizl “. rTI’(Qk M) <0 kajl
p . . 2 _ Ns [ | , = k=
Vo2t Py Fig =i Vic1 : VM = 0,M;(1,1) =1
\ | 22185 =1 - \ | M;(1:nN;+1,1:nNs +1) = M,

Caveat: still need to deal with a rank constraint




Example: Human Activity Analysis

15F

Moment Clustering

R — T e ——
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(In)Validating SARX Models




Model (In)validation of SARX Systems

e

yr = P2’ Cr + nft
e Given: 5 = p1’ Cp + M

- A nominal switched model of the form:

}ft
N4

Zazl Ar(o)yi—r + Zz;l Cr(o)w— + (o)
yt + 0,

- A bound on the noise (||n]|.. <€)
- Experimental Input/Output Data {ut, yt}fzto

e Determine:

- whether there exist noise and switching sequences
consistent with a priori information and experimental data
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Reduces to SDP via
Putinar’s Positivstellensatz




Model (In)validation of SARX Systems

e

yr = P2’ Cr + nft
e Given: 5 = p1’ Cp + M

- A nominal switched model of the form:

Zazl Ar(o)yi—r + Zz;l Cr(o)w— + (o)
yt + 0,

}ft
N4

- A bound on the noise (||n]|.. <€)
- Experimental Input/Output Data {ut, yt}fzto

e Determine:

- whether there exist noise and switching sequences
consistent with a priori information and experimenta data

Reduces to SDP via Guaranteed convergence
Putinar’s Positivstellensatz for the n=T relaxation




(In)validation Certificates:

e The model is invalid if and only if

4 . T Ng 2 )
Milg 5 D g D g €t

subject to:
ar = i t(8ie Thimy_p0) =€ L

ZSthl




Model (In)validation of SARX Systems

Noise from t to t-n

Hidden sparse structure Complexity dominated by
similar to the Id case the order of the model




Example: Activity Monitoring

e A priori switched model: walking and waiting, 4% noise

e Test sequences of hybrid behavior:

WALK, WAIT RUN WALK, JUMP

Not Invalidated Invalidated Invalidated



Adding topological constraints:

e The model is invalid if and only if

: T s
\ ( mlns,n Zt:l 2?21 67'271; \
: subject to:
‘)e\ ) 4" = ¢ Si,¢ (it + DMy, 0) = €2 > >0
2isit =1

s?,t =1
L M]lec <€ ,

plus additional linear constraints:

> G.jeJ Si’t+Sj’t+151,Vi€1,VjEJ

[ These destroy sparsity patterns! ]




Example: Activity Monitoring

e A

Not Invalidated (d=-3e-8)

e B

Invalidated (d=0.175)

A Priori information




Identifying Sparse Dynamical Networks



AE LIBOLIRRNE

Who is in the same team?
Who reacts to whom?



Formalization as a graph id problem:

Each time series becomes a node in a graph

Each edge is a dynamical system N M b I




A Sparsification Problem:

* Find block sparse solutions to:

x = [X,I][a"u’]" + ¢

«Efficient solutions using atomic norm minimization
-Atoms are the time series at other nodes

* Projection free Frank-Wolfe algorithm

x = [X, 1] [a*u’]* + 7 mzin |z — x|

s.t.  ||z||lsa <7



Algorithm

min  f(z) min |z - x|

st. |z||la<T s.t.  ||z||lsa <7

Frank-Wolfe Algorithm

1: Initialize:
2% + Tay for arbitrary a0 € A
2: for k — 0)1323"'d0

: (k)
3: a + arg g{élﬂ(af(z ), a)

g ow e i [ ol )

- 2F) 4 apfra — 2]

5:

6: end for

|Converges as O(1/n) |




Algorithm

min f(z) min ||z — X;||2
s.t. |zl|la <7 s.t.  ||zl|lsa <7
Frank-Wolfe Algorithm o R L
1: Initialize: L « argmax{]|[0f(z")T A1} |
z(0) <— Tag for arbitrary ao cA c « —sign([0f(z®)]TAL)
2: for kzoalaza"'do Lsm-iu"(_ ALCW“ —m
3. a + arg mindd )

g ow e i [ ol )

- 2F) 4 apfra — 2]

5:

6: end for



Algorithm

min f(z) min ||z — X;||2
st. |z||la<T s.t.  ||z||lsa <7
Frank-Wolfe Algorithm o R L
1: Initialize: L < argmax/{]|[0f(z*)]" A1} |
z(0) <— Tag for arbitrary ao cA c « —sign([0f(z®)]TAL)
2: for kzoalaza"'do Lsm-iu"(_ ALCH‘““ -
3. a + arg mindd )
: 7 (k) _ (k)
4- Q< arg aren[%]?l] f(zail 4 afta — z'"))
—p
z(Ft1)  7(k) + ai|Ta — z(%) T L 72NT % — Z(k)
5: cl | [ak < max{min{ [a ira i Z[(kj) 2 ] , 1}, 0_}J

6: end for



Algorithm

min  f(z) min ||z — ;||
st. |z||la<T s.t.  ||z||lsa <7
Frank-Wolfe Algorithm o R L
1: Initialize: L « argmax{]|[0f(z")]"Aqll:}
z(0) <— Tag for arbitrary ao cA c « —sign([0f(z®)]TAL)
2:f0r kzoalaza"'do Eﬁ“ﬁﬁaﬁw(_“:flﬂLcwd _—
3. a ¢+ arg min(8HzOTAT
: 7 (K) _ (k)
4- Q< arg aren[%l?l] f(zail 4 afta — z'"))
725D 2R 4 o [Ta — z(k)] _ [T:Z(k)]T[xj — z(®)]
5: oy + max{min{ E—TE ,1},0} |
6: end for

| Closed form solutions to each step |




Example

Interactions between human agents



More examples:




Tracking by detection

Reduces to an assignment problem with “"dynamics- induced” weights

o 3/ . - rank(H;)+rank(H;) 1 _\/f"“"’

-7 | Y ral’lk([Hi HJ]) \x




Crowd photography sequencing

t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t¥1 0 >




e Semi-supervised Sysld

e Wiener systems identification
e Identification with outliers

e Identification of PWA systems
e (In)validation of PWA systems
e Sparse network Id.

e Optimal sensor placement

e Controller design subject to sparsity constraints

All of these are known to be NP-hard, yet often solvable in polynomial
time using sparsity based convex relaxations




What is Big Data?




What is Big (Dynamic) Data?

Computational complexity is related to data
interconnectivity, not data sizel!
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Easy Hard




What is Big (Dynamic) Data?

Computational complexity is related to data
interconnectivity, not data sizel!

X4

¥
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"
-
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;? X3
A R
ﬁ X5 K ke e
Y3 Ya Y5 Y6
Easy Hard

Related to max clique size of an underlying graph




Big Data & Sparsity:

Sparsity can provide a way
around the curse of dimensionality

e Challenge: how to build in and exploit the “right” sparsity
- Graphs with small tree width (network design)
- Low order models

e Submodularity also helps
- what other properties can we exploit?

e An interesting connection between several communities:
- Control, semi-algebraic optimization, machine learning,....



Big Data & Sparsity:
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e Challenge: how to build in and exr («f” e “right” sparsity

- Graphs with small tree width e\?’ design)
- Low order models ’{(\

e Submodularity also hely \‘\'\OQ’
- what other propertir G(\o e exploit?

e An interesting cor é\ on between several communities:
- Control, sew 00 draic optimization, machine learning,....



SoS for “real sized” problems :

e Many promising advances towards making SoS/Moments
practical:
- ADMM, Frank-Wolfe, Factorizations

e Empirical experience: force M to be rank 1

In many practical problems (e.g. subspace clustering) forcing a small
matrix (much smaller than the running intersection) to have rank 1
guarantees rank(M)=1

e New developments covered elsewhere in this workshop
- Ahmadi & Hall: DSoS and SDSoS
- Lasserre: Krivine+Putinar P-satz (LP+fixed size SDC)

e Getting there, but more work needed. Keep tuned for
more
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