
Northeastern �
U N I V E R S I T Y�

The Interplay between Sparsity and Big Data
 in

 Systems Theory

 M. Sznaier
Robust Systems Lab

ECE, Northeastern University

Motivation 1: SysId

Goal: Find a low order, stable model

Motivation 2: distributed sensing & control

Goal: impose a sparse structure

Motivation 3: decision making

How do we make (provably) correct decisions in a “data deluged”
environments? (a hidden hybrid SysId problem)

Hard or Easy?

!! Claim 1: These problems are (NP!) hard

Hard or Easy?

!! Claim 1: These problems are (NP!) hard

!! Claim 2: These problems can be solved in polynomial
time

Hard or Easy?

!! Claim 1: These problems are (NP!) hard

!! Claim 2: These problems can be solved in polynomial
time

Both can’t be right, can they?

Hard or Easy?

!! Claim 1: These problems are generically NP-hard

!! Claim 2: Many of these problems can be solved in
polynomial time

Hard or Easy?

!! Q: What makes a problem easy?

!! A: Convexity?

Hard or Easy?

!! Q: What makes a problem easy?

!! A: Convexity? Not Necessarily!

 Optimization over co-Positive matrices is NP-hard

Hard or Easy?

!! Q: What makes a problem easy?

!! A: Convexity + Self-Concordance?

Hard or Easy?

!! Q: What makes a problem easy?

!! A: Convexity + Self-Concordance? Not Necessarily!

In (convex) SysId Big Data may be as low as 102

Horizon ADMM (secs) SDP solver(secs)
280 1071.8 4177.0
350 1828.0 12686.9
420 2657.7 out of memory

Hard or Easy?

!! Q: What makes a problem hard?

!! A: Lack of Convexity?

Hard or Easy?

!! Q: What makes a problem hard?

!! A: Lack of Convexity? Not Necessarily!

 Non-convex but solving for 100000
variables takes 50 secs on a Mac

min
X

cixixi+1 subject to xi = ±1

Hard or Easy?

!! Q: What makes a problem hard/easy?

!! A: Structure
–! Self Similarity
–! Sparsity

!! Both observed in many practical problems
–! Often they induces “good” convexity
–! Exploited in Machine Learning for “static” problems

Hard or Easy?

!! Challenge

–! Separate easy/hard problems
–! Understand where does the complexity come from
–! Use this understanding to design “easy” problems

Main point of this talk: These issues are related
to the sparsity structure of the problem

Intuition: look at QCQP

p⇤ =min
x

Trace(Q

o

xx

0
) s.t.Trace(Q

i

xx

0
)  0 i = 1, ..n

p⇤ =min
x

x

0
Q

o

x s.t. x0
Q

i

x  0 i = 1, ..n

p
SDP

=min
x

Trace(Q
o

X) s.t.Trace(Q
i

X)  0, X ⌫ 0

Clearly and if rank(X)=1 pSDP  p⇤ pSDP = p⇤

Intuition: look at QCQP

p⇤ =min
x

Trace(Q

o

xx

0
) s.t.Trace(Q

i

xx

0
)  0 i = 1, ..n

p⇤ =min
x

x

0
Q

o

x s.t. x0
Q

i

x  0 i = 1, ..n

p
SDP

=min
x

Trace(Q
o

X) s.t.Trace(Q
i

X)  0, X ⌫ 0

Clearly and if rank(X)=1

Q: Can we get this for (almost) free?

pSDP  p⇤ pSDP = p⇤

Polynomial Optimization Exploiting sparsity in QCQP

X2 X1
X3

!! Complexity related to the topology of a graph:
–! Each vertex corresponds to a variable
–! There is an edge (i,j) if there are terms involving xixj

Polynomial Optimization

X2 X1
X3 XN

!! If the graph is a tree, then the SDP relaxation is exact

J. Lavaei, 2014

Exploiting sparsity in QCQP

Polynomial Optimization

!! If the graph is a tree, then the SOCP relaxation is exact

!! Example:

Solving for 100,000 variables takes 50 secs on a Mac
Structure and Sparsity Matter

Exploiting sparsity in QCQP

X2 X1
X3 XN

min
X

cixixi+1 subject to xi = ±1

x1,x2,..xk..xd,xd+1,!xd+k,!!!!xn-d+1,xn

!! Many problems have a sparse structure (running intersection)

 where each pi(.), fi(.) depends only on a subset of variables such that

Polynomial Optimization Sparse polynomial optimization

P1

f1

min
x

p1(x) + p2(x) + . . . p

m

(x) s.t.

f1(x
↵)  0

f2(x
↵)  0

...

f

m

(x↵)  0

x1,x2,..xk..xd,xd+1,!xd+k,!!!!xn-d+1,xn

!! Many problems have a sparse structure (running intersection)

 where each pi(.), fi(.) depends only on a subset of variables such that

Polynomial Optimization

P1

f1

min
x

p1(x) + p2(x) + . . . p

m

(x) s.t.

f1(x
↵)  0

f2(x
↵)  0

...

f

m

(x↵)  0

Sparse polynomial optimization

x1,x2,..xk..xd,xd+1,!xd+k,!!!!xn-d+1,xn

!! Many problems have a sparse structure (running intersection)

 where each pi(.), fi(.) depends only on a subset of variables such that

Polynomial Optimization

P1

P2

f1

f2

min
x

p1(x) + p2(x) + . . . p

m

(x) s.t.

f1(x
↵)  0

f2(x
↵)  0

...

f

m

(x↵)  0

Sparse polynomial optimization

Polynomial Optimization Sparse polynomial optimization

!! Running intersection is related to cliques in the (chordal
completion of the) csp graph

Polynomial Optimization Sparse polynomial optimization

Size of the running intersection is given by the tree width

!! Running intersection is related to cliques in the (chordal
completion of the) csp graph

Polynomial Optimization Sparse polynomial optimization

Complexity dominated by the size of the clique, not the size of the problem

!! Running intersection is related to cliques in the (chordal
completion of the) csp graph

Connecting Information, Sparsity & Dynamics

Where should we pay attention?:

Features (edges, regions, etc.) are important.

Where should we pay attention?:

Dynamics are important too!.

!! Strong prior:
–! Signal has a sparse

representation

 only a few ci ! 0

!! Signal Recovery:
–! “sparsify” the coefficients

Sparse signal recovery:

!! Strong prior:
–! Signal has a sparse

representation

 only a few ci ! 0

!! Signal Recovery:
–! “sparsify” the coefficients

:

Sparse signal recovery:

!! Strong prior:
–! Actionable information is

generated by low complexity
dynamical systems.

!! Information extraction:
–! “sparsify” the dynamics

–! Where M(.), E(.) are affine in y

Sparse information extraction

min
y

{rank[M(y)] + �kE(y)k
o

}

time

 Example: Solving “Temporal Puzzles”

 Example: Solving “Temporal Puzzles”

min

c
kck1 subject to:

v = Dc

kPy � vk  ✏

P 2 P

D is a suitably chosen
dynamic dictionary

y v

Dynamic
sparsification

 Example: Solving “Temporal Puzzles”

Information Extraction as an ID problem

–! Model data streams as outputs of switched systems
–! “Interesting” events ! Model invariant(s) changes
–! An identification/model (in)validation problem.

Information extraction as an Id problem:

u
G(!)

y

features, pixel values, !

SARX Id problem:

!! Given:
–! Bounds on noise (||"||# $%), sub-system order (no)
–! Input/output data (u,y)
–! Number of sub-models

!! Find:
–! A piecewise affine model such that:

u y

G!t
"

!! Given N points in Rn, fit them to hyperplanes

!! “Chicken and egg” problem

–! Do not known the point “labels”
–! Do not know the hyperplanes.

Piecewise Affine (PWA) Systems Id problem

NP Hard !

yt + ⌘t �
naX

i=1

Ai(�2)yt�i �
ncX

i=1

Ci(�2)ut�i = 0

or

A hidden QCQP problem

 Reformulation:

yt + ⌘t �
naX

i=1

Ai(�1)yt�i �
ncX

i=1

Ci(�1)ut�i = 0

Piecewise Affine (PWA) Systems Id problem

and

Subject to:

s1,t(yt + ⌘t �
naX

i=1

Ai(�1)yt�i �
ncX

i=1

Ci(�1)ut�i) = 0

s2,t(yt + ⌘t �
naX

i=1

Ai(�2)yt�i �
ncX

i=1

Ci(�2)ut�i) = 0

QCQP reformulation:

si,t = s2i,t, and
X

i

si,t = 1

 s 2 {0, 1}

Piecewise Affine (PWA) Systems Id problem QCQP reformulation:

Piecewise Affine (PWA) Systems Id problem QCQP reformulation:

xj is an inlier in Si if sij = 1

Piecewise Affine (PWA) Systems Id problem QCQP reformulation:

xj is an inlier in Si if sij = 1

sij 2 {0, 1}

Piecewise Affine (PWA) Systems Id problem QCQP reformulation:

xj is an inlier in Si if sij = 1

sij 2 {0, 1}

each sample is assigned

to one subspace

Piecewise Affine (PWA) Systems Id problem QCQP reformulation:

xj is an inlier in Si if sij = 1

sij 2 {0, 1}

each sample is assigned

to one subspace

Solvable using SoS / Moments
techniques

Polynomial Optimization Hidden Sparse Structure:

s2 s1
s3 sN

Model parameters

s1,t(yt + ⌘t �
naX

i=1

Ai(�1)yt�i �
ncX

i=1

Ci(�1)ut�i) = 0

Polynomial Optimization

s2 s3 sN

Complexity determined by the order
of the model.

s1

 Hidden Sparse Structure:

Linear in the number of data points

Polynomial Optimization Exploiting the Sparse Structure:

Reduced problem:
Scales as O(Np(Ns)6)

Original problem:
Scales as O((NpNs)6)

Linear in the number of data points

Polynomial Optimization Exploiting the Sparse Structure:

Reduced problem:
Scales as O(Np(Ns)6)

Original problem:
Scales as O((NpNs)6)

Caveat: still need to deal with a rank constraint

Example: Human Activity Analysis

WALK BEND WALK

(In)Validating SARX Models

!! Given:
–! A nominal switched model of the form:

–! A bound on the noise (||"||# $%)
–! Experimental Input/Output Data

!! Determine:
–! whether there exist noise and switching sequences

consistent with a priori information and experimental data

 Data

Model (In)validation of SARX Systems

!! Given:
–! A nominal switched model of the form:

–! A bound on the noise (||"||# $%)
–! Experimental Input/Output Data

!! Determine:
–! whether there exist noise and switching sequences

consistent with a priori information and experimenta data

 Data

Reduces to SDP via
Putinar’s Positivstellensatz

Model (In)validation of SARX Systems

!! Given:
–! A nominal switched model of the form:

–! A bound on the noise (||"||# $%)
–! Experimental Input/Output Data

!! Determine:
–! whether there exist noise and switching sequences

consistent with a priori information and experimenta data

 Data

Reduces to SDP via
Putinar’s Positivstellensatz

Model (In)validation of SARX Systems

Guaranteed convergence
for the n=T relaxation

 (In)validation Certificates:

!! The model is invalid if and only if

d⇤
.
=

8
>>>>>><

>>>>>>:

mins,⌘
PT

t=1

Pns

i=1 e
2
i,t

subject to:

si,t(gi,t + hi,t⌘t�na:t) = ei,tP
i si,t = 1

s2i,t = 1

k⌘k1  ✏

9
>>>>>>=

>>>>>>;

> 0

Hidden sparse structure
similar to the Id case

Model (In)validation of SARX Systems

Complexity dominated by
the order of the model

Noise from t to t-n

s2 s1
s3 sN

Example: Activity Monitoring

•! A priori switched model: walking and waiting, 4% noise

•! Test sequences of hybrid behavior:

WALK, WAIT RUN WALK, JUMP

Not Invalidated Invalidated Invalidated

 Adding topological constraints:

!! The model is invalid if and only if

plus additional linear constraints:

, , 1 1, ,i t j ts s i I j J++ ! " # " #

d⇤
.
=

8
>>>>>><

>>>>>>:

mins,⌘
PT

t=1

Pns

i=1 e
2
i,t

subject to:

si,t(gi,t + hi,t⌘t�na:t) = ei,tP
i si,t = 1

s2i,t = 1

k⌘k1  ✏

9
>>>>>>=

>>>>>>;

> 0

These destroy sparsity patterns!

Example: Activity Monitoring

A Priori information

Invalidated (d=0.175)

Not Invalidated (d=-3e-8)
run

walk

Identifying Sparse Dynamical Networks

Who is in the same team?
Who reacts to whom?

Each time series becomes a node in a graph

Formalization as a graph id problem:

Each edge is a dynamical system

= + + a1 a2

? ?

A Sparsification Problem:

•! Find block sparse solutions to:

•!Efficient solutions using atomic norm minimization

•!Atoms are the time series at other nodes

•! Projection free Frank-Wolfe algorithm

Algorithm

Frank-Wolfe Algorithm!
1: Initialize:
 for arbitrary
2: for do

3:

4:

5:

6: end for

 for arbitrary
2: for do

Converges as O(1/n)

Algorithm

Frank-Wolfe Algorithm!
1: Initialize:
 for arbitrary
2: for do

3:

4:

5:

6: end for

 for arbitrary
2: for do

Algorithm

Frank-Wolfe Algorithm!
1: Initialize:
 for arbitrary
2: for do

3:

4:

5:

6: end for

 for arbitrary
2: for do

Algorithm

Frank-Wolfe Algorithm!
1: Initialize:
 for arbitrary
2: for do

3:

4:

5:

6: end for

 for arbitrary
2: for do

Closed form solutions to each step

Example

 Interactions between human agents

More examples:

 Tracking by detection

Reduces to an assignment problem with “dynamics- induced” weights

rank(Hi)+rank(Hj)
rank([Hi Hj])

� 1

t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10

time

 Crowd photography sequencing

Polynomial Optimization More examples where sparsity & self similarity help

!! Semi-supervised SysId

!! Wiener systems identification

!! Identification with outliers

!! Identification of PWA systems

!! (In)validation of PWA systems

!! Sparse network Id.

!! Optimal sensor placement

!! Controller design subject to sparsity constraints

All of these are known to be NP-hard, yet often solvable in polynomial
time using sparsity based convex relaxations

What is Big Data?
x4

y4 x5

y5 x6

y6 x7

y7 x8

y8 x9

y9 x10

y10 x11

y11

x14

y14

x1
3

y1
3

x1
2

y1
2

x1

y1

x2

y2 x3

y3

x1

y1

x2

y2 x2

y2

x3

y3

x3

y3

x3

y3

x4

y4 x4

y4 x4

y4

x5

y5 x5

y5

x6

y6

x
yyyxx xyxy

xo

yo

Computational complexity is related to data
interconnectivity, not data size!!

What is Big (Dynamic) Data?

x4

y4 x5

y5 x6

y6 x7

y7 x8

y8 x9

y9 x10

y10 x11

y11

x14

y14

x1
3

y1
3

x1
2

y1
2

x1

y1

x2

y2 x3

y3

x1

y1

x2

y2 x2

y2

x3

y3

x3

y3

x3

y3

x4

y4 x4

y4 x4

y4

x5

y5 x5

y5

x6

y6

x
yyyxx xyxy

xo

yo

 Easy Hard

Computational complexity is related to data
interconnectivity, not data size!!

What is Big (Dynamic) Data?

x4

y4 x5

y5 x6

y6 x7

y7 x8

y8 x9

y9 x10

y10 x11

y11

x14

y14

x1
3

y1
3

x1
2

y1
2

x1

y1

x2

y2 x3

y3

x1

y1

x2

y2 x2

y2

x3

y3

x3

y3

x3

y3

x4

y4 x4

y4 x4

y4

x5

y5 x5

y5

x6

y6

x
yyyxx xyxy

xo

yo

 Easy Hard

Related to max clique size of an underlying graph

!! Challenge: how to build in and exploit the “right” sparsity

–! Graphs with small tree width (network design)
–! Low order models

!! Submodularity also helps

–! what other properties can we exploit?

!! An interesting connection between several communities:
–! Control, semi-algebraic optimization, machine learning,….

Sparsity can provide a way
around the curse of dimensionality

Big Data & Sparsity:

!! Challenge: how to build in and exploit the “right” sparsity

–! Graphs with small tree width (network design)
–! Low order models

!! Submodularity also helps

–! what other properties can we exploit?

!! An interesting connection between several communities:
–! Control, semi-algebraic optimization, machine learning,….

Sparsity can provide a way
around the curse of dimensionality

Big Data & Sparsity:

SoS for “real sized” problems :

!! Many promising advances towards making SoS/Moments

practical:
–! ADMM, Frank-Wolfe, Factorizations

!! Empirical experience: force M to be rank 1
In many practical problems (e.g. subspace clustering) forcing a small
matrix (much smaller than the running intersection) to have rank 1
guarantees rank(M)=1

!! New developments covered elsewhere in this workshop

–! Ahmadi & Hall: DSoS and SDSoS
–! Lasserre: Krivine+Putinar P-satz (LP+fixed size SDC)

!! Getting there, but more work needed. Keep tuned for
more

!! Many thanks to:

–! Audience
–! Students: Y. Cheng, Y. Wang, X. Zhang
–! Colleagues: O. Camps. C. Lagoa, N. Ozay
–! Workshop organizers
–! Funding agencies (AFOSR, DHS, NSF)

More information as http://robustsystems.coe.neu.edu

Acknowledgements:

