Problem 1: Image compression and remembering John F. Nash

Figure 1: The image to be compressed.

If we were to rank the topics in computational linear algebra in terms of how frequently they arise in applications, singular value decomposition (SVD) would probably take one of the very top spots. In this problem, we introduce you to this concept and present one of its applications in image processing. The SVD also has applications in many other domains, notably in statistics.

Let A be a real $m \times n$ matrix of rank r. (Recall that the rank of A is the number of linearly independent columns of A.) The singular value decomposition of A is a decomposition of the form

$$A = U \Sigma V^T,$$

where U, Σ, and V are respectively $m \times m$, $m \times n$, and $n \times n$; U and V are orthogonal matrices (i.e., satisfy $U^T U = I$ and $V^T V = I$), and Σ is a matrix with r positive scalars $\sigma_1, \ldots, \sigma_r$ on the diagonal of its upper left $r \times r$ block and zeros everywhere else. The scalars $\sigma_1, \ldots, \sigma_r$
are called the *singular values* of A. They are given as

$$\sigma_i = \sqrt{\text{i-th eigenvalue of } A^T A},$$

and by convention they appear in descending order:

$$\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_r.$$

The columns of U and V are respectively called the left and right *singular vectors* of A and can be obtained by taking an orthonormal set of eigenvectors for the matrices AA^T and A^TA. In Matlab, the command `svd` handles these eigenvector computations for you and outputs the three matrices U, Σ, V.

First, you need to answer some very basic questions about the SVD.

1. Show that eigenvalues of $A^T A$ are always nonnegative. (Hence singular values are well-defined as real, nonnegative scalars.)

2. Show that if u_i and u_j are eigenvectors of $A^T A$ associated to distinct eigenvalues λ_i, λ_j, then u_i and u_j are orthogonal.

What does this have to do with image compression? Let A be a real $m \times n$ matrix with an SVD given by $A = U\Sigma V^T$ defined as above. For a positive integer $k \leq \min\{m, n\}$, we let $A_{(k)}$ denote an $m \times n$ matrix which is an “approximation” of the matrix A obtained from its top k singular values and singular vectors. Formally, we have

$$A_{(k)} := U_{(k)} \Sigma_{(k)} V_{(k)}^T,$$

where $U_{(k)}$ has the first k columns of U, $V_{(k)}$ has the first k columns of V, and $\Sigma_{(k)}$ is the upper left $k \times k$ block of Σ. A well-known result in optimization states that

$$A_{(k)} = \min_{B \in \mathbb{R}^{m \times n}, \text{rank}(B) \leq k} \|A - B\|_F.$$

Here, $\|\cdot\|_F$ denotes the so-called Frobenius norm of a matrix defined as $\|C\|_F = \sqrt{\sum_{i,j} C_{i,j}^2}$.

In words, the result states that among all $m \times n$ matrices of rank at most k, the matrix $A_{(k)}$ obtained from truncating the SVD is the one that best approximates A. The benefit in approximating a matrix with low-rank matrices is that low-rank matrices admit a much more succinct representation. Let’s see how this applies to our image compression problem.

Download the file `nash.jpg` into your Matlab path. You can read this in by typing:

1By an orthonormal set of vectors we mean a collection of vectors that are pairwise orthogonal and each have 2-norm equal to one.
3. For $k = 25, 50, 100, 200$, use Matlab to compute $A_{(k)}$ as defined above. Report the value of $||A - A_{(k)}||_F$ in each case. (Include your code for this part and the next.)

4. Use the commands `subplot` and `imshow` to produce on the same figure the original image, as well as your compressed images $A_{(k)}$ for $k = 25, 50, 100, 200$. Label your subplots. In addition, produce two separate plots demonstrating (i) $||A - A_{(k)}||_F$ versus k, and (ii) “total savings” versus k. Total savings is to be interpreted as the answer to the question: How many fewer numbers do you need in order to store $A_{(k)}$ than you did to store A. Explain why this number is equal to $mn - (n + m + 1)k$. How much are you saving for $k = 200$?

5. Use the Matlab function `imwrite` and upload the two images `imshow(A)` and `imshow(A_{(200)}` side by side on Instagram with the caption #PrincetonORF363. Ask your friends if they can tell which image is the original and which is the compressed version. (We are joking. There’s no grade assigned to this part of the problem!)

Problem 2: Local minima and maxima

Find the local minimizers and the local maximizers of the function

$$f(x_1, x_2) = x_1^2x_2 - 2x_1x_2^2 + 3x_1x_2 + 4.$$

Plot this function using Matlab and the command `ezsurf` and rotate the surface around with your mouse. Does the number of local minima and maxima that you found agree with what you see on the plot?

Problem 3: Minimizers of convex problems

Let $f : \mathbb{R}^n \to \mathbb{R}$ be a convex function and $\Omega \subseteq \mathbb{R}^n$ be a convex set. Show that the set of minimizers of f over Ω is convex (i.e., a convex set). Show via two counterexamples that the claim does not hold if either assumption is removed.
Problem 4: Copositive matrices

An $n \times n$ real symmetric matrix Q is said to be copositive if $x^T Q x \geq 0$ for all $x \in \mathbb{R}^n$ such that $x \geq 0$. (The inequality on x is elementwise.)

(a) Prove that the set of $n \times n$ copositive matrices is convex. Show that the set of $n \times n$ noncopositive matrices is nonconvex unless $n = 1$.

(b) Give an example of a matrix that is copositive but neither positive semidefinite nor elementwise nonnegative. (You have to prove all claims about the example that you produce.)