
1

A Working Knowledge of 
Computational Complexity

for an Optimizer

ORF 363/COS 323

Instructor: Amir Ali Ahmadi
TAs: B. El Khadir, G. Hall, X. Li, K. Wang, J. Ye, J. Zhang

Fall 2016



Why computational complexity?

2

ÁWhat is computational complexity theory?

LǘΩǎ ŀ ōǊŀƴŎƘ ƻŦ ƳŀǘƘŜƳŀǘƛŎǎ ǘƘŀǘ ǇǊƻǾƛŘŜǎ ŀ ŦƻǊƳŀƭ ŦǊŀƳŜǿƻǊƪ ŦƻǊ 
studying how efficiently one can solve problems on a computer.

ÁThis is absolutely crucial to optimization and many other computational sciences.

ÁIn optimization, we are constantly looking for algorithms to solve various 
problems as fast as possible. So it is of immediate interest to understand the 
fundamental limitations of efficient algorithms.

Á{ƻ ŦŀǊ ƛƴ ǘƘƛǎ Ŏƭŀǎǎ ǿŜΩǾŜ ƘŀŘ ŀ ǊǳƭŜ ƻŦ ǘƘǳƳō ŦƻǊ ŎƘŜŎƪƛƴƎ ƛŦ ŀƴ ƻǇǘƛƳƛȊŀǘƛƻƴ 
ǇǊƻōƭŜƳ ƛǎ άŜŀǎȅέΥ 

Á{ŜŜ ƛŦ ƛǘΩǎ convex! 

ÁBut this only scratches the surface. Are all nonconvex problems hard? Are some 
of them hard? Are there even convex problems that are hard?

ÁWhat does it even mean to be hard?!

Á[ŜǘΩǎ ōŜƎƛƴ ōȅ ǳƴŘŜǊǎǘŀƴŘƛƴƎ ǿƘŀǘ ƛǘ ƳŜŀƴǎ ǘƻ ƘŀǾŜ ŀ άǇǊƻōƭŜƳέΗ



Optimization problems/Decision problems/Search problems

3

(answer to a decision question is just YES or NO)

Optimization problem:

Decision problem:

Search problem:

ÁIt turns out that all three problems are equivalent, in the sense that if you could solve 
one efficiently, you could also solve the other two. See Ex. 8.1,8.2 of [DPV].

ÁWe will focus on decision problemsΣ ǎƛƴŎŜ ƛǘΩǎ ŀ 
bit cleaner to develop the theory there.



! άǇǊƻōƭŜƳέ ǾŜǊǎǳǎ ŀ άǇǊƻōƭŜƳ ƛƴǎǘŀƴŎŜέ

4

ÁA (decision) problem is a general description of a problem to be answered with 
yes or no. 

ÁEvery decision problem has a finite input that needs to be specified for us to 
choose a yes/no answer.

ÁEach such input defines an instanceof the problem.

ÁA decision problem has an infinite number of instances. 
ό²Ƙȅ ŘƻŜǎƴΩǘ ƛǘ ƳŀƪŜ ǎŜƴǎŜ ǘƻ ǎǘǳŘȅ ǇǊƻōƭŜƳǎ ǿƛǘƘ ŀ ŦƛƴƛǘŜ ƴǳƳōŜǊ ƻŦ ƛƴǎǘŀƴŎŜǎΚύ

ÁDifferent instances of the STABLE SET problem:

(It is common to use capital letters for the name of a decision problem.)



Examples of decision problems

5

ÁLINEQ

An instance of LINEQ:

ÁZOLINEQ

An instance of ZOLINEQ:

ÁRemark. Input is rationalso we can represent it with a finite number of bits. This 
is the so-ŎŀƭƭŜŘ άbit model of computationέΣ ŀƪŀ ǘƘŜ ά¢ǳǊƛƴƎ ƳƻŘŜƭΦΩΩ



Examples of decision problems

6

ÁLP

An instance of LP:

(This is equivalent to testing LP feasibility (why?).)

ÁIP



Examples of decision problems

7

ÁMAXFLOW

An instance of MAXFLOW:

[ŜǘΩǎ ƭƻƻƪ ŀǘ ŀ ǇǊƻōƭŜƳ ǿŜ 
ƘŀǾŜ ǎŜŜƴΧ

Can you formulate the 
decision problem?



Examples of decision problems

8

ÁCOLORING

ÁFor example, the following graph is 
3-colorable.

ÁGraph coloring has important 
applications in job scheduling.

ÁWe want to understand how fast can all these problems be solved?



Size of an instance

9

ÁTo talk about the running time of an algorithm, we need to have a notion of the 
άǎƛȊŜ ƻŦ ǘƘŜ ƛƴǇǳǘέΦ

ÁOf course, an algorithm is allowed to take longer on larger instances.

ÁCOLORING ÁSTABLE SET

ÁReasonable candidates for input size:

ÁNumber of nodes n

ÁNumber of nodes + number of edges 
(number of edges can at most be n(n-1)/2)

ÁNumber of bits required to store the adjacency 
matrix of the graph



Size of an instance

10

ÁIn general, can think of input size as the total number of bits required to represent 
the input.

ÁFor example, consider our LP problem:

ÁLP



Useful notation for referring to running times

11



Polynomial-time and exponential-time algorithms 

12

Something you all know: Poly-time: Exp-time:



13

Sissa
(credited for creating 
the game of chess)

See page 233 of [DPV] 
for the story.



Comparison of running times

14Image credit: [GJ79]



/ŀƴ aƻƻǊŜΩǎ ƭŀǿ ŎƻƳŜ ǘƻ ǊŜǎŎǳŜΚ

15Image credit: [GJ79]



The complexity class P

16

ÁThe class of all decision problems that admit a polynomial-time algorithm.



Example of a problem in P

17

ÁPENONPAPER

ÁPeek ahead: this problem is asking if there is a path that visits every edgeexactly once.

ÁIf we were to ask for a path that instead visits every nodeexactly once, we would have 
a completely different story in terms of complexity!



How to prove a problem is in P?

18

ÁDevelop a poly-time algorithm from scratch! Can be far from trivial (examples below).

ÁMuch easier: use a poly-time hammer somebody else has developed. (Reductions!)


