Lec4p1, ORF363/COS323

This lecture:

- Convex optimization
 - \circ Convex sets
 - \circ Convex functions
 - Convex optimization problems
 - Why convex optimization? Why so early in the course?

Recall the general form of our optimization problems:

$$\min f(x)$$

s.t. $x \in \Omega$

- In the last lecture, we focused on unconstrained optimization: $\Omega = \mathbb{R}^n$.
- We saw the definitions of local and global optimality, as well as first and second order optimality conditions.
- In this lecture, we consider a very important special case of constrained optimization problems known as "*convex optimization problems*".
- For these problems,
 - *f* will be a *"convex function"*.
 - Ω will be a *"convex set"*.
 - These notions are defined formally in this lecture.
- Roughly speaking, the high-level message is this:
 - Convex optimization problems are pretty much the broadest class of optimization problems that we know how to solve efficiently.
 - They have nice geometric properties;
 - e.g., a local minimum is automatically a global minimum.
 - Numerous important optimization problems in engineering, operations research, machine learning, etc. are convex.
 - There is available software that can take (a large subset of) convex problems written in very high-level language and solve it.
 - You should take advantage of this!
 - Convex optimization is one of the biggest success stories of modern theory of optimization.

Instructor: Amir Ali Ahmadi

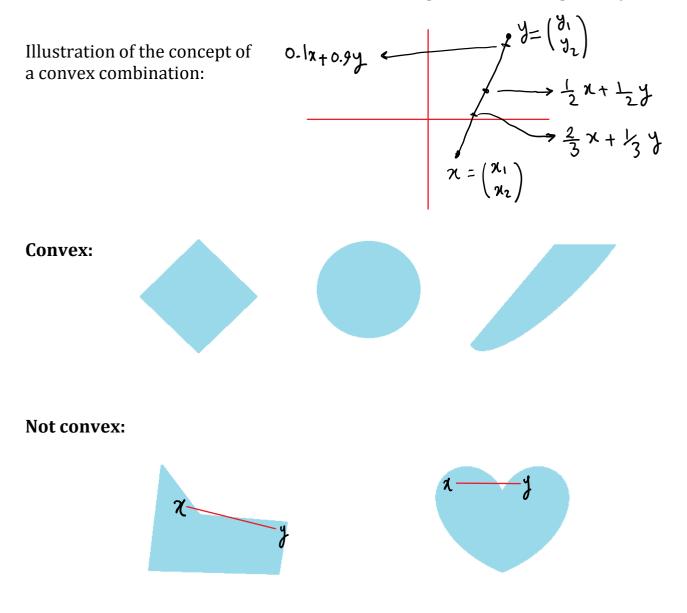
Lec4p2, ORF363/COS323

Convex sets

Definition. A set $\Omega \subseteq \mathbb{R}^n$ is *convex*, if for all $x, y \in \Omega$, the line segment connecting x and y is also in Ω . In other words,

$$x, y \in \Omega, \lambda \in [0,1] \Rightarrow \lambda x + (1 - \lambda)y \in \Omega$$

- A point of the form $\lambda x + (1 \lambda)y$, $\lambda \in [0,1]$ is called a *convex combination* of x and y.
- Note that when λ = 0, we are at y; when λ = 1, we are at x; for intermediate values of λ, we are on the line segment connecting x and y.



Lec4p3, ORF363/COS323

Convex sets & Midpoint Convexity

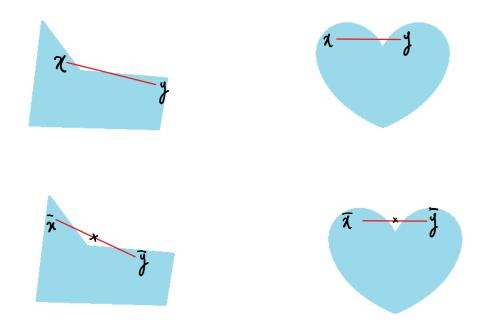
Midpoint convexity is a notion that is equivalent to convexity in most practical settings, but it is a little bit cleaner to work with.

Definition. A set $\Omega \subseteq \mathbb{R}^n$ is *midpoint convex*, if for all $x, y \in \Omega$, the midpoint between x and y is also in Ω . In other words,

$$x, y \in \Omega \Rightarrow \frac{1}{2}x + \frac{1}{2}y \in \Omega.$$

- Obviously, convex sets are midpoint convex.
- Under mild conditions, midpoint convex sets are convex
 - $\circ~$ e.g., a closed midpoint convex sets is convex.
 - What is an example of a midpoint convex set that is not convex? (The set of all rational points in [0,1].)

The nonconvex sets that we had are also not midpoint convex (why)?:

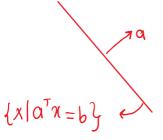


Lec4p4, ORF363/COS323

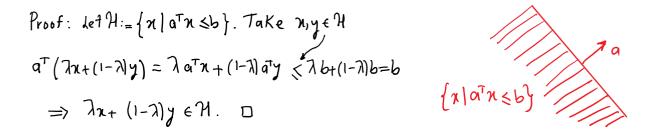
Common convex sets in optimization

(Prove convexity in each case.)

• Hyperplanes: $\{x \mid a^T x = b\}$ $(a \in \mathbb{R}^n, b \in \mathbb{R}, a \neq 0)$



• Halfspaces: $\{x \mid a^T x \le b\}$ $(a \in \mathbb{R}^n, b \in \mathbb{R}, a \ne 0)$



• Euclidean balls: $\{x \mid ||x - x_c|| \le r\}$ $(x_c \in \mathbb{R}^n, r \in \mathbb{R}, ||.|| 2$ -norm)

Proof: Let
$$B:= \{x \mid ||x - x_c|| \leq r\}$$
. Take $x, y \in B$.

$$\| \lambda_{x+} (1 - \lambda)y - x_c \| = \| \lambda (x - x_c) + (1 - \lambda)(y - x_c) \|$$

$$x_{x} \in B$$
Triangle
$$\| \lambda (x - x_c) \| + \| (1 - \lambda)(y - x_c) \| \stackrel{\text{homog.}}{=} \lambda \| x - x_c \| + (1 - \lambda) \| y - y_c \| \stackrel{\text{def}}{\leq} \lambda r + (1 - \lambda)r = r. \Rightarrow \lambda x + (1 - \lambda)y \in B.$$
ineq.

• Ellipsoids: $\{x | (x - x_c)^T P(x - x_c) \le r\}$ $(x_c \in \mathbb{R}^n, r \in \mathbb{R}, P > 0)$

(*P* here is an $n \times n$ symmetric matrix)

Proof hint: Wait until you see convex functions and quasiconvex functions. Observe that ellipsoids are sublevel sets of convex quadratic functions.

Lec4p5, ORF363/COS323

Fancier convex sets

Many fundamental objects in mathematics have surprising convexity properties.

For example, prove that the following two sets are convex.

• The set of (symmetric) positive semidefinite matrices: $S_{+}^{n \times n} = \{P \in S^{n \times n} | P \ge 0\}$

Proof. Let A 5, , B 5, o. Let J & [o, 1]. x (JA+(1-2)B)x = Jx Ax+(1-2)x Bx 20.

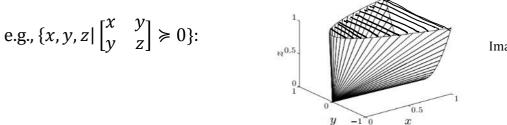
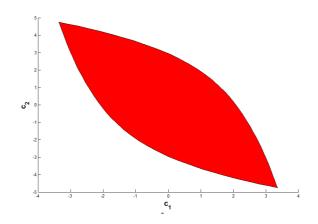


Image credit: [BV04]

• The set of nonnegative polynomials in *n* variables and of degree *d*. (A polynomial $p(x_1, ..., x_n)$ is nonnegative, if $p(x) \ge 0, \forall x \in \mathbb{R}^n$.)

e.g.,
$$\{(c_1, c_2) | 2x_1^4 + x_2^4 + c_1x_1x_2^3 + c_2x_1^3x_2 \ge 0, \forall (x_1, x_2) \in \mathbb{R}^2\}$$
:



Lec4p6, ORF363/COS323

Intersections of convex sets

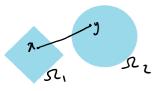
• Easy to see that intersection of two convex sets is convex: $\Omega_1 \text{ convex}, \Omega_2 \text{ convex} \Rightarrow \Omega_1 \cap \Omega_2 \text{ convex}.$

Proof:

Pick
$$x \in \Omega, (\Omega_2, y \in \Omega, (\Omega_2))$$

 $\forall \lambda \in [0,1], \lambda \times + (1-\lambda)y \in \Omega, (b_{1c}, \Omega_1 \text{ is convex})$
 $\int \lambda \times + (1-\lambda)y \in \Omega, (b_{1c}, \Omega_2 \text{ is convex})$
 $\lambda \times + (1-\lambda)y \in \Omega, (\Omega_2, \Omega)$

• Obviously, the union may not be convex:



λ

Polyhedra

- A polyhedron is the solution set of finitely many linear inequalities.
 - Ubiquitous in optimization theory.
 - Feasible sets of "linear programs" (an upcoming subject).
- Such sets are written in the form:

$$\{x \mid Ax \le b\},\$$

where *A* is an $m \times n$ matrix, and *b* is an $m \times 1$ vector.

• These sets are convex: intersection of halfspaces $a_i^T x \le b_i$, where a_i^T is the *i*-th row of *A*.

e.g.,
$$A = \begin{bmatrix} -1 & 0 \\ 0 & -1 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$
, $b = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 3 \end{bmatrix}$

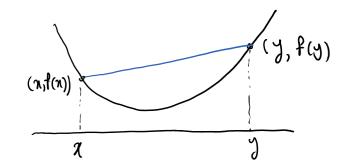
Lec4p7, ORF363/COS323

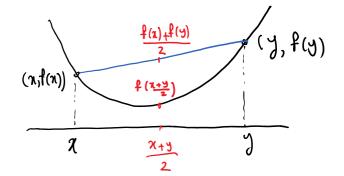
Convex functions

Definition. A function $f : \mathbb{R}^n \to \mathbb{R}$ is *convex* if its domain is a convex set and for all x, y in its domain, and all $\lambda \in [0,1]$, we have

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y).$$

- In words: take any two points *x*, *y*; *f* evaluated at any convex combination should be no larger than the same convex combination of *f*(*x*) and *f*(*y*).
- If $\lambda = \frac{1}{2}$, interpretation is even easier: take any two points *x*, *y*; *f* evaluated at the midpoint should be no larger than the average of *f*(*x*) and *f*(*y*).
- Geometrically, the line segment connecting (x, f(x)) to (y, f(y)) sits above the graph of f.





Lec4p8, ORF363/COS323

Definition. A function $f: \mathbb{R}^n \to \mathbb{R}$ is

Concave, if ∀x, y, ∀λ ∈ [0,1] f(λx + (1 − λ)y) ≥ λf(x) + (1 − λ)f(y).
 Strictly convex, if ∀x, y, x ≠ y, ∀λ ∈ (0,1)

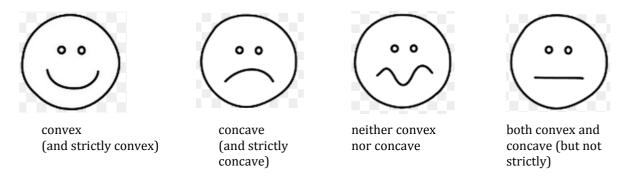
$$f(\lambda x + (1 - \lambda)y) < \lambda f(x) + (1 - \lambda)f(y).$$

• Strictly concave, if $\forall x, y, x \neq y, \forall \lambda \in (0,1)$ $f(\lambda x + (1 - \lambda)y) > \lambda f(x) + (1 - \lambda)f(y).$

Note: f is concave if and only if -f is convex. Similarly, f is strictly concave if and only if -f is strictly convex.

The only functions that are both convex and concave are affine functions; i.e., functions of the form:

 $f(x) = a^T x + b, \qquad (a \in \mathbb{R}^n, b \in \mathbb{R}).$



Let's see some examples of convex functions (selection from [BV04]; see this reference for many more examples).

Examples of univariate convex functions $(f : \mathbb{R} \to \mathbb{R})$:

- *e*^{*ax*}
- $-\log x$
- x^a (defined on \mathbb{R}_{++}) $a \ge 1$ or $a \le 0$
- $-x^a$ (defined on \mathbb{R}_{++}) $0 \le a \le 1$
- $|x|^a, a \ge 1$
- $x \log x$ (defined on \mathbb{R}_{++})
- Try to plot the functions above and convince yourself of convexity visually.
- Can you formally verify that these functions are convex?
- We will soon see some characterizations of convex functions that make the task of verifying convexity a bit easier.

Examples of convex functions $(f: \mathbb{R}^n \to \mathbb{R})$

• Affine functions: $f(x) = a^T x + b$ (for any $a \in \mathbb{R}^n, b \in \mathbb{R}$)

(convex, but not strictly convex; also concave)

 $Proof: \forall \lambda \in [0,1], f(\lambda \chi + (1-\lambda)y) = a^{T}(\lambda \chi + (1-\lambda)y) + b$

$$= \lambda a^{T} x + (1 - \lambda) a^{T} y + \lambda b + (1 - \lambda) b = \lambda f(x) + (1 - \lambda) f(y). \Box$$

• Some quadratic functions:

$$f(x) = x^T Q x + c^T x + d$$

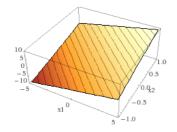
- Convex if and only if $Q \ge 0$.
- Strictly convex if and only if Q > 0.
- Concave iff $Q \leq 0$; Strictly concave iff Q < 0.
- Proofs are easy from the second order characterization of convexity (coming up).
- **Any norm:** meaning, any function *f* satisfying:
 - a. $f(\alpha x) = |\alpha| f(x), \forall \alpha \in \mathbb{R}$
 - b. $f(x + y) \le f(x) + f(y)$
 - c. $(f(x) \ge 0, \forall x, f(x) = 0 \Rightarrow x = 0)$

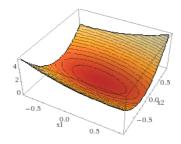
$$\begin{aligned} \forall \lambda \in [-,1] \\ Proof: f(\lambda x + (1-\lambda)y) &\stackrel{b}{\leq} f(\lambda x) + f((1-\lambda)y) \\ &\stackrel{a}{=} \lambda f(x) + (1-\lambda)f(y). \end{aligned}$$

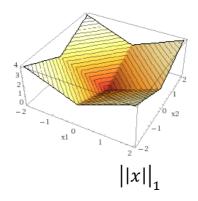
Examples:

•
$$||x||_{\infty} = \max_{i} |x_{i}|$$

• $||x||_{p} = \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{\frac{1}{p}}, \quad p \ge 1$
• $||x||_{p} = \sqrt{x^{T}Qx}, Q > 0$







 \Box

Lec4p10, ORF363/COS323

Midpoint convex functions

Same idea as what we saw for midpoint convex sets.

Definition. A function $f : \mathbb{R}^n \to \mathbb{R}$ is *midpoint convex* if its domain is a convex set and for all x, y in its domain, we have

$$f(\frac{x+y}{2}) \le \frac{1}{2}f(x) + \frac{1}{2}f(y).$$

- Obviously, convex functions are midpoint convex.
- Continuous, midpoint convex functions are convex.

Convexity = Convexity along all lines

Theorem. A function $f: \mathbb{R}^n \to \mathbb{R}$ is convex if and only if the function $g: \mathbb{R} \to \mathbb{R}$, given by g(t) = f(x + ty) is convex (as a univariate function), for all x in domain of f and all $y \in \mathbb{R}^n$. (The domain of g here is all t for which x + ty is in the domain of f.)

- This should be intuitive geometrically:
 - The notion of convexity is defined based on line segments.
- The theorem simplifies many basic proofs in convex analysis.
- But it does not usually make verification of convexity that much easier; the condition needs to hold for *all* lines (and we have infinitely many).
- Many of the algorithms we will see in future lectures work by iteratively minimizing a function over lines. It's useful to remember that the restriction of a convex function to a line remains convex. Here is a proof:

$$\begin{aligned} & \text{Suppose for some } x,y, \ g(\alpha) = f(x + \alpha y) \ \text{was not convex.} \\ \Rightarrow \exists \lambda \in [0,1], \ \alpha_1, \alpha_1 \ \text{s.t.} \ g(\forall \alpha_1 + (1 - \lambda) \alpha_2) \ \forall \ \lambda \in [0,1], \ \alpha_1, \alpha_1 \ \text{s.t.} \ g(\forall \alpha_1 + (1 - \lambda) \alpha_2) \ \forall \ \lambda \in [0,1], \ \alpha_1, \alpha_1 \ \text{s.t.} \ g(\forall \alpha_1 + (1 - \lambda) \alpha_2) \ \forall \ \lambda \in [0,1], \ \alpha_1, \alpha_1 \ \text{s.t.} \ g(\forall \alpha_1 + (1 - \lambda) \alpha_2) \ \text{s.t.} \ f(\forall \alpha_1 + (1 - \lambda) \alpha_2) \ \text{s.$$

Lec4p11, ORF363/COS323

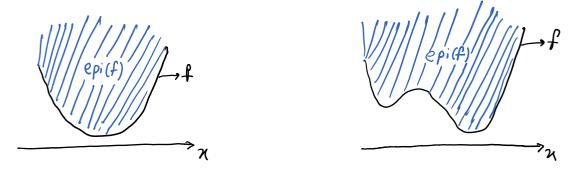
Epigraph

Is there a connection between convex sets and convex functions?

• We will see a couple; via epigraphs, and sublevel sets.

Definition. The epigraph epi(f) of a function $f : \mathbb{R}^n \to \mathbb{R}$ is a subset of \mathbb{R}^{n+1} defined as

 $epi(f) = \{(x, t) | x \in \text{domain}(f), f(x) \le t\}.$



Theorem. A function $f : \mathbb{R}^n \to \mathbb{R}$ is convex if and only if its epigraph is convex (as a set).

Proof: Suppose f not convex
$$\Rightarrow \exists x, y \in dom(f), \exists \in [0,1]$$

s.t. $f(\exists x + (1-\exists)y) > \exists f(x) + (1-\exists)f(y)$. \mathbb{D}
Pick $(x, f(x)), (y, f(y)) \in epi(f)$.
 $\mathbb{D} \Rightarrow (\exists x + (1-\exists)y, \exists f(x) + (1-\exists)f(y)) \notin epi(f)$.

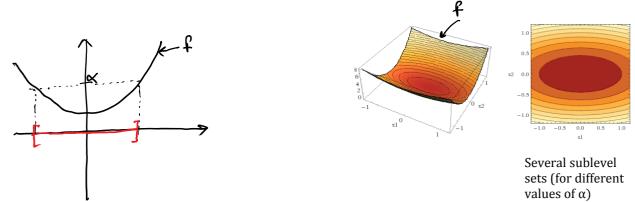
Suppose
$$epi(f)$$
 not Genvex $\Rightarrow \exists (n, t_n), (y, t_y), \exists e[oil]$
s.c. $f(n) \leq t_n$, $f(y) \leq t_y$, $f(\exists n + (i - \exists)y) > \exists t_n + (i - \exists)t_y$
 $\forall \exists f(n) + (i - \exists)f(y)$

$$\implies$$
 f not convex. []

Lec4p12, ORF363/COS323

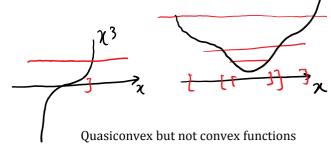
Convexity of sublevel sets

Definition. The α -sublevel set of a function $f: \mathbb{R}^n \to \mathbb{R}$ is the set $S_{\alpha} = \{x \in \text{domain}(f) | f(x) \le \alpha\}.$



Theorem. If a function $f : \mathbb{R}^n \to \mathbb{R}$ is convex, then all its sublevel sets are convex sets.

- Converse *not* true.
- A function whose sublevel sets are all convex is called *quasiconvex*.



Proof of theorem:

Pick
$$\chi, y \in S_{\alpha}$$
, $\eta \in [0, 1]$
 $\chi \in S_{\alpha} \Rightarrow f(x) \leq \alpha$; $y \in S_{\alpha} \Rightarrow f(y) \leq \alpha$
 $f \text{ convex } \Rightarrow f(\lambda_{n+(1-\lambda)}y) \leq \lambda f(n) + (1-\lambda)f(y)$
 $\leq \lambda \alpha + (1-\lambda) \alpha$
 $= \alpha$
 $\Rightarrow \lambda n + (1-\lambda)y \in S_{\alpha}$. \Box

Lec4p13, ORF363/COS323

Convex optimization problems

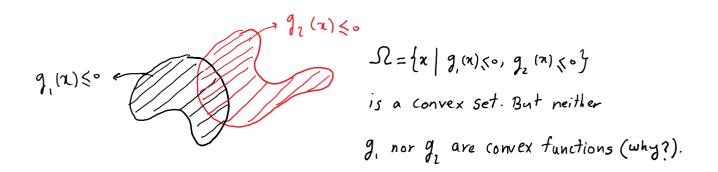
A convex optimization problem is an optimization problem of the form

min.
$$f(x)$$

s.t. $g_i(x) \le 0, i = 1, ..., m,$
 $h_j(x) = 0, j = 1, ..., k,$

where $f, g_i: \mathbb{R}^n \to \mathbb{R}$ are convex functions and $h_i: \mathbb{R}^n \to \mathbb{R}$ are affine functions.

- Let Ω denote the feasible set: $\Omega = \{x \in \mathbb{R}^n | g_i(x) \le 0, h_i(x) = 0\}.$
 - $\circ~$ Observe that for a convex optimization problem Ω is a convex set (why?)
 - But the converse is not true:
 - Consider for example, Ω = {x ∈ ℝ| x³ ≤ 0}. Then Ω is a convex set, but minimizing a convex function over Ω is not a convex optimization problem per our definition.
 - However, the same set can be represented as Ω = {x ∈ ℝ | x ≤ 0}, and then this would be a convex optimization problem with our definition.
- Here is another example of a convex feasible set that fails our definition of a convex optimization problem:



Lec4p14, ORF363/COS323

Convex optimization problems (cont'd)

- We require this stronger definition because otherwise many abstract and complex optimization problems can be formulated as optimization problems over a convex set. (Think, e.g., of the set of nonnegative polynomials.) The stronger definition is much closer to what we can actually solve efficiently.
- The software CVX that we'll be using ONLY accepts convex optimization problems defined as above.
- Beware that [CZ13] uses the weaker and more abstract definition for a convex optimization problem (i.e., the definition that simply asks Ω to be a convex set.)

Acceptable constraints in CVX:

- Convex \leq Concave
- Affine == Affine

This is really the same as:

- Convex ≤ 0
- Affine == 0

Why?

(Hint: Sum of two convex functions is convex, and sums and differences of affine functions are affine.)

Lec4p15, ORF363/COS323

Notes:

• Further reading for this lecture can include the first few pages of Chapters 2,3,4 of [BV04]. Your [CZ13] book defines convex sets in Section 4.3. Convex optimization appears in Chapter 22. The relevant sections are 22.1-22.3.

References:

- [BV04] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004. <u>http://stanford.edu/~boyd/cvxbook/</u>
- [CZ13] E.K.P. Chong and S.H. Zak. An Introduction to Optimization. Fourth edition. Wiley, 2013.