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Convex setsƺ

Convex functionsƺ

Convex optimization problemsƺ

Why convex optimization? Why so early in the course?ƺ

Convex optimizationω
This lecture:

Recall the general form of our optimization problems:

                                           

                                                           ÍÉÎȢὪὼ
                                                    s.t.   ὼɴ ɱ

In the last lecture, we focused on unconstrained optimization: ɱ ᴙȢω
We saw the definitions of local and global optimality, as well as first and 
second order optimality conditions.

ω

In this lecture, we consider a very important special case of constrained 
optimization problems known as "convex optimization problems".

ω

Ὢwill be a "convex function".ƺ

ɱwill be a "convex set".ƺ

These notions are defined formally in this lecture.ƺ

For these problems,ω

Convex optimization problems are pretty much the broadest class of 
optimization problems that we know how to solve efficiently.

ƺ

e.g., a local minimum is automatically a global minimum.Á

They have nice geometric properties;ƺ

Numerous important optimization problems in engineering, 
operations research, machine learning, etc. are convex.

ƺ

You should take advantage of this!Á

There is available software that can take (a large subset of) convex 
problems written in very high-level language and solve it.

ƺ

Convex optimization is one of the biggest success stories of modern 
theory of optimization.

ƺ

Roughly speaking, the high-level message is this:ω
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Convex sets

Definition. A set ɱṖᴙ is convex, if for all ὼȟώɴ ɱȟthe line segment 
connecting ὼand ώ is also in ɱȢ In other words,

                            ὼȟώᶰɱȟʇɴ πȟρᵼ‗ὼ ρ ‗ώɴ ɱ  

A point of the form ‗ὼ ρ ‗ώ, ‗ɴ πȟρis called a convex combination
of ὼ and ώȢ 

ω

Note that when ‗ πȟwe are at ώȠ when ʇ ρȟwe are at ὼȠfor 
intermediate values of ʇȟwe are on the line segment connecting ὼand ώȢ

ω

Convex:

Not convex:

Illustration of the concept of 
a convex combination:
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Convex sets & Midpoint Convexity

Midpoint convexity is a notion that is equivalent to convexity in most practical 
settings, but it is a little bit cleaner to work with.

Definition. A set ɱṖᴙ is midpoint convex, if for all ὼȟώᶰɱȟthe midpoint 
between ὼand ώ is also in ɱȢ In other words,

                                   ὼȟώᶰɱᵼ
ρ

ς
ựựὼ

ρ

ς
ựựώᶰɱȢ 

Obviously, convex sets are midpoint convex.ω

e.g., a closed midpoint convex sets is convex.ƺ

What is an example of a midpoint convex set that is not convex?
(The set of all rational points in πȟρȢ)

ƺ

Under mild conditions, midpoint convex sets are convexω

The nonconvex sets that we had are also not midpoint convex (why)?:
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Common convex sets in optimization

Hyperplanes:  ὼȿ ὥὼ ὦ  ὥᶰᴙȟὦɴ ᴙȟὥ πω

Halfspaces: ὼȿ ὥὼ ὦ  ὥɴ ᴙȟὦɴ ᴙȟὥ πω

Euclidean balls: ὼȿ ȿὼ ὼȿ ὶ   ὼᶰᴙȟὶɴ ᴙȟȿȿȢȿȿ2-norm)ω

Ellipsoids: ὼȿὼ ὼ ὖὼ ὼ  ὶ   ὼᶰᴙȟὶɴ ᴙȟὖṋπ)ω

(Prove convexity in each case.)

(ὖhere is an ὲ ὲsymmetric matrix)

Proof hint: Wait until you see convex functions 
and quasiconvex functions. Observe that 
ellipsoids are sublevel sets of convex quadratic 
functions.
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Fancier convex sets

Many fundamental objects in mathematics have surprising convexity 
properties.

The set of (symmetric) positive semidefinite matrices:
Ὓ ὖᶰὛ ȿ ὖṍπ

ω

The set of nonnegative polynomials in ὲvariables and of degree ὨȢω
(A polynomial ὴὼȟȣȟὼ) is nonnegative, if ὴὼ πȟᶅὼɴ ᴙȢ

Image credit: [BV04]

For example, prove that the following two sets are convex.

e.g., ὼȟώȟᾀȿ
ὼ ώ
ώ ᾀṍπȡ

e.g., ὧȟὧ ȿ ςὼ ὼ ὧὼὼ ὧὼὼ πȟᶅ ὼȟὼ ᶰᴙ ȡ
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