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This lecture: Instructor:

w Operations that preserve convexity Amir Ali Ahmadi

3 Nonnegative weighted sum

3 Pointwise maximum

3 Composition with an affine mapping

3 Restriction to a line
w Applications of convex optimization to statistics and

machine learning
3 Least absolute shrinkage and selection operator
(LASSO ); aka least squares witi penalty
3 Supervised learning
A Support vector machines (SVMs)

Operations that preserve convexity

w In the previous lecture, we covered some of the reasons why convex
optimization problems are so desirable in the field of optimization. We
also gave some characterizations of convex functions that made it easit
to recognize convex problems.

w Nevertheless, since testing convexity can in general be an intractable ta:
[AOPT13], it is useful to produce as many convex functions as we can
from a ground set of functions that we already know are convex.

w This is exactly what "convexitypreserving rules" do: They take some
convex functions as input and perform certain operations to produce
more convex function. Often, the new convex functions turn out to have
much richer class of applications.

w There is a long list of convexitypreserving rules [BV04]. We present only
four of them here. The software CVX that you are using has a lot of thes
rules built in [BGO08], [CVX11].

Rule 1: Nonnegative weighted sums

If "OF8 HQare convex functions and M A T, then
MO S Qe E 1 Qw

Is convex also. Similarly, a nonnegative weighted sum of concave functions is
concave.
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Proof: Let"Of8 HQbe convex functions, MR  mhofoy 8 PAT W mip & E A

where the second line is obtained using convexity 08 AQand the fact that the
inequalities are preserved a®» B h are nonnegative.

w Note that this in particular implies:
3 If| mand "Qs convex, then " convex.
3 If 'Qand™Qare convex, thenQ ™"Qis convex.
w Also easy to prove the theorem from the second order characterization of
convexity (assuming differentiability). Do you see how the proof would work?
w Since the sum of two convex functions is convex, a constraint of the following
form is a valid CVX constraint (why?):
3 Convex function Concave function.

w Q: If "OfiQare convex functions,

3 1s'Q "Qconvex? o, B o= x?

3 is'Q "Qconvex? L= n, Fp=n?
i 3

3 Isinconvex? £ - L, Fy=

Suppose€ @ © Al N a  andwN s &efine"@a © g by
VO QO ® ©

with’ Q¢ dQ o @ N Q& dQ 8rhen, if'Qs convex, so i8Q if "As concave,
S0 is'Q

The proof is given on the following page.
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Proof: Letchod s and_N Tip 8Then:

MO p _0 QW_op _0 ©
oOow p to w
foww p _todcd
_ oo p _"Q0w
_@ p _Qws
So g is convex. The proof in the concave case is similar.

ORR:

using the fact that’'Qs convex

Example.
The following function is immediately seen to be convex. (Without knowing
the rule above, it would be much harder to prove convexity.)

(3%, +2%,-5)
&4 ! 1
‘)c(l.'ﬂ(z_,)s ('X_l——l’x‘l) —+ 2e

%H (Co'\vex) ) ComPoSeJ with W =2 (OK‘HI‘V\Q)

6—& (COY\\IKX), C,DW\POSQJ “;H’\ BN VA W (a-f%;‘mc)

If 'Q 8 HQ are convex functions then their pointwise maximum
Qo | ADORQOMB™Q ®» h

with Q¢ dQ Q¢ dQ . Q¢ dQ  E Q¢ dQ ,is also convex.

oo {’f\ ;‘fz_&
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Proof: Prc K ary 9 ¢ dom(#), Ue [0)1] . Then,

F(Axs 0-09) = B (A (-Ng) (For some geqh,mY)
Fy Gnvex &7 X A (04 (10 B(Y)
N max [fix)oy Fn 00 2 (1= X max {Aio)o- (11
= JF6GO0+0) Fly) . O
Also easy to prove From epi yraphs.

m

Recall  F Convex & epi(F) Gomvex. epi (£)= ﬂ epi (£)

5 epi ()
Ay Know mtersection of Convex - %/
We ow v ecTi0h o7 Cowe
n | C % -Fl
sets s (ohvex. [ p
2
Example - the hinge loss \
The hinge loss functioiQow | A @p ® is convex. \.
W

w One can similarly show that the pointwise minimum of two concave

functions is concave.

w But the pointwise minimum of two convex functions may not be convex.
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