
More on convex optimization•
Minima of convex problems•
First and second order characterizations of 
convex functions

•

Least squares revisited•
Strict convexity and uniqueness of optimal 
solutions

•

Optimality condition for convex problems•

This lecture:

where 

Each    is affine:             
      •

           are convex:                                 •

                      

Similarly for the   
   

Recall from the last lecture that a convex optimization problem is a problem of 
the form:

min.             f  )   
s.t.                                           
                                                 

In a convex problem, every local minimum is automatically a global 
minimum. (This is true even for the more abstract definition of a 
convex optimization problem from the last lecture that only 
required the feasible set to be a convex set.)

○

In the unconstrained case, every stationary point (i.e., zero of the 
gradient) is automatically a global minimum.

○

Today we start off by proving results that explain why we give special 
attention to convex optimization problems.

•

We will also see new characterizations for convex functions that make 
the task of checking convexity somewhat easier, though in general 
checking convexity can be a very difficult problem [AOPT13].

•
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Let's recall the definition of local and global minima and generalize them to the 
constrained setting.

                      min.         
                       s.t.                                                 

Definition: A point      is 

feasible,  if                 
            

       •

a local minimum, if feasible, and if        s.t.  •

                                                               s.t.      and           

a strict local minimum,  if feasible, and if       s.t. •

                                                        s.t.     and           

a  global minimum, if feasible, and if                 •

a  strict global minimum, if feasible, and if                      •

Our next few theorems show the nice features of convex problems in terms of 
inferring global properties from local ones.
                                              

  : not feasible•
  : strict global minimum•
  : feasible•
  : strict local minimum•
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Theorem. Consider an optimization problem

                                     min.         
                                     s.t.           

where  is a convex function and   is a convex set. Then, every  local
minimum is also a global minimum.

Proof.

Let   be a local minium. Suppose for the sake of contradiction that  is not a 
global minimum.

                                  

But             convex                      

and    convex                              

                                                                                                   
                                    
As                         So there are points arbitrarity close to  with 
a better objective value than  . This contradicts local optimality of  .          

Intuition:
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First and second order characterization 
of convex functions                                    

Theorem. Suppose         is twice differentiable over its domain. Then, the 
following are equivalent:

  is convex.(i)
                                           .(ii)
                            (i.e., the Hessian is psd          ).         (iii)

Interpretation:

The first order Taylor expansion
at any point is a global under
estimator of the function

(i)

Function has nonnegative curvature
everywhere:

(ii)

In one dimension: 
                   

○

"It curves up".

We prove          For              see, e.g., Theorem 22.5 of [CZ13].

Sign of the curvature 
(sign of      
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Proof:
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Corollary. Consider an unconstrained optimization problem:

min.     
   s.t.      

 
where   is convex and differentiable. Then, any point     that 
satisfies          is a global minimum.

Remark 1. Recall that          is always a necessary condition for 
local optimality in an unconstrained problem. The theorem says that for 
convex problems           is not only necessary, but also sufficient for 
local and global optimality.

Proof. From the first order characterization of convexity

we have                                             

In particular,                                        

Since                   we get
                                         
                                                                                                     

Note that a convex function automatically passes this test.○

Remark 3. Recall that another necessary condition for (unconstrained) 
local optimality of a point  was:           

Remark 2. Recall that in absence of convexity,        is not 
sufficient even for local optimality (e.g., think of        and     ).
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Let                   ( symmetric)•

When is   convex?•

Let's use the second order test: ○

         

   convex      (independent of    )

Consider the unconstrained optimization problem •

                  
      

     (  not convex)   unbounded below (why?)○

    convex (in fact,    strictly convex as we see next)○

Unique solution:     
 

 
      (why?)

       convex. Optimal value may or may not be 
bounded, and there could be many optimal solutions. 

○

Quadratic functions revisited

              
(but     
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Least squares, revisited.

Given:    matrix

   vector

Solve:

(Assume columns of  are 
linearly independent)

This is the best conclusion we could make before without knowing that  is 
convex. Now that we know  is (strictly) convex, we immediately know that 
the solution             is a (strict) global minimum.
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  strictly convex   convex (obvious from the definition)•

  convex             strictly convex•

          e.g.,                   (     

Second order sufficient condition: •

                strictly convex on  

Converse not true: •

                

  is strictly convex (why?).

But             (check)

First order characterization: •

  strictly convex on      

 

                                 

Characterization of Strict Convexity

One of the main uses of strict convexity is to ensure uniqueness of 
optimal solutions. We see this next.

•

Recall that we say       is strictly convex, if                   
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Strict Convexity and Uniqueness of Optimal Solutions

Theorem. Consider an optimization problem

min.     
s.t.     

where        is strictly convex on  and  is a convex set. Then, the 
(optimal) solution is unique (assuming it exists). 

Proof. Suppose there were two optimal solutions       . This means that 
      and 

                                     (1)

But consider   
   

 
   . By convexity of  , we have      By strict convexity, 

we have        
   

 
    

                             
 

 
       

 

 
     

                           = 
 

 
       

 

 
            

But this contradicts (1).  

Practice: for each function below, determine whether it is convex, strictly 
convex, or neither.

             
 •

             
          

 •

             
          

    
 •

               •

                  •
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An Optimality Condition for Convex Problems

Theorem. Consider an optimization problem

where       is convex and differentiable and  is a convex. Then, a point 
  is optimal if and only if    and 

                                                                   

       
s.t.     

If you move from  towards any feasible    you will increase  locally.○

      (assuming it is nonzero) serves as a hyperplane that 
"supports" the feasible set   at  (see figure below).

○

What does this mean?•

The necessity of the condition holds independent of convexity of  .•
Convexity is used in establishing sufficiency.•

Hint: take           ○

If       can you see how the condition above reduces to our first order 
unconstrianed optimality condition         

•
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Proof.
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Further reading for this lecture can include the first few pages of Chapters 
2,3,4 of [BV04]. Your [CZ13] book defines convex sets in Section 4.3. Convex 
optimization appears in Chapter 22. The relevant sections are 22.1-22.3. 

•

Notes:
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