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Optimization over nonnegative polynomials

Definition by example: How to pick ¢4, ¢,, c; so to make

p(x1, %) = cixf — 6x3x, — 4x3 + c,x¥x5 + 10x7 + 12x,x5 + c3x5

nonnegative over a given basic semialgebraic set?

Basic semialgebraic set: {x € R™| g;(x) = 0, hj(x) = 0}

Ex: x; — 2x;x5 =0
x7 + 3x;x, — x5 >0

Ty
punnnadigetly
sessy)

-This problem is fundamental to many areas of applied/computational mathematics.

-It is the problem that “SOS optimization” is designed to solve.
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Why would you want
to do this?!

| et’s start with five application domains...
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1. Polynomial optimization

‘Min. P(’l) le—s/ max. ¥ ‘
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*Many applications: the optimal power flow problem, low-rank matrix
factorization, dictionary learning, training of deep nets with polynomial
activation function, sparse regression with nonconvex regularizes, etc.

"Intractable in general (includes your favorite NP-complete problem)
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2. Optimization under input uncertainty

How to make optimal decisions when input to optimization problem is uncertain/noisy?

The Markowitz portfolio optimization problem

T
st /‘ A 2)5 (return) U. - {
L 2n<s (risk)
X 7o _2.‘14',:1-
y XAy}

u € R™: mean vector ¥ € §™*™: covariance
of the returns matrix of the returns

In practice estimated from past
data/ML model. Optimal portfolio
sensitive to this input.
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Shape-constrained regression; e.g., monotone and/or convex regression

Shape constraints act as regularizer, improve test performance,
make model more interpretable and trustworthy

3. Statistics and machine learning

\\ \\

Shape constraints natural in most applications ::‘\\\Q\\\\\\‘

Zestimate

$514,690

2
Zillow $511,403

Zestimate

5 beds - 4 baths - 2,623 sqft

Parking @ Year Built
2 spaces 1992

. : : . Op(x
Monotonicity of a polynomial p(x4, ..., x,,) with respect to feature j: g( )

L L Ll L x'

“ML for fast real-time convex optimization” J

g(b) := min fo(x)

st. fi(x)<b;ji=1,..,m
x € ()

fOJ
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., fm convex functions, () a convex set.

>0,Vx €EB

Goal: learn g(b) offline from training
set; evaluate it online very fast

g:R™ = Ris
- convex

yTV2g(b)y = 0,Vb,Vy

J

- nonincreasing w.r.t. all arguments

dg(b)

<
b, 0,Vb,Vj

6



Imposing monotonicity

e For whatvalues of a, b is the following polynomial monotone over [0,1]?

p(x) = x*+ax3+ bx? — (a + b)x

a=-1,b=-3
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4. Certifying properties of dynamical systems

Questions about
properties of
dynamical systems

(e.g., stability, safety)

onwversiry 2500 REE

Lyapunov
theory
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Search for Semlalgc?bra.m
functions satisfying | Parametrization

nonnegativity |

constraints
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Polynomial
inequalities




Example: certifying stability
= f(z) f:R" =R

3, 14

2
51?1 — 5331332

T9 = 3T1 — T1X9

EX. 1= —29+

Locally asymptotic stability (LAS) of
equilibrium points

Lyapunov’s theorem (and its converse):

The origin is LAS if and only if there exists a
C! function V: R™ — R that vanishes at the
origin and a scalar § > 0 such that

V(ix)>0
VX)) <B=2VEx) =VV)Tf(x) <0 //

V

Wi (If V(x) < 0 everywhere, then globally stable.)



5. Automated theorem proving in geometry

e Kissing number in dimension n: largest number of n-dimensional non-overlapping
spheres that can simultaneously touch (or “kiss”) a common unit sphere.

k, =6 ky =? ks >12 Newton Gregory

8

k; =12 k;=1
Discussion/bet in 1694

4 /,/"7 5 o -
/ f L p . i,
\{ . Y
\ | 3 - -
S P ¥ -~ gt :
4 \ | 4 .
,/ \ P
| .
-
|

Newton proved to be
13 spheres impossible iff the following system is infeasible: correct in 1953!

x?—I—y?—I—z?:ﬁl,i:l,...,lS ~

(i — 2;)* + (yi — y;)* + (2 — 2;)* > 4, <' ;J'('I)}o -
i,je{l,...,lS}Q : & l { ]-‘-?ﬂ“('ﬂ(a
i B

H
9y (1) 7

Joo (V7 °
infeasible

(.-l PRINCETON -
UNIVERSITY =



Outline of the rest of the talk...

e Global nonnegativity
— Sum of squares (SOS) and semidefinite programming
— Two applications
— Hilbert’s 17t problem
e Nonnegativity over a region
— Positivstellensatze of Stengle and Putinar

— Three applications

e Recap and further reading
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How would you prove nonnegativity?

Ex. Decide if the following polynomial is nonnegative:

4 3 3 2 9 2 9 9
p(z) = i —6zizy + 2aiwy + 62703 + 97723 — 6zizoTs
— 14z zox2 + dz123 + Bt — 72222 + 1622

=Not so easy! (In fact, NP-hard for degree = 4)

=But what if | told you:
plE) = (xf — 3x1x9 + T17T3 + 2x§)2 + (z123 — x2x3)2
+(4z3 — x3)°.

Natural questions:
°Q1: Is it any easier to test for a sum of squares (SOS) decomposition?

*Q2: Is every nonnegative polynomial SOS?

PRINCETON = 12
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Sum of squares and semidefinite programming

[Lasserre], [Nesterov], [Parrilo]

Q1: Is it any easier to decide SOS?

=Yes! Can be reduced to a semidefinite program (SDP)

=Can also efficiently search and optimize over SOS polynomials

=As we will see, this latter property is very important in
applications...

(% PRINCETON == 13
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Semidefinite programming (SDP)

* Abroad generalization of linear programs | P Scc.anvex) QAP <socp< SDP

* Can be solved to arbitrary accuracy in polynomial time (e.g., using interior
point algorithms) [Nesterov, Nemirovski], [Alizadeh]

min.  Jr (CX) Nofes: Te (CX)= 2, Cijhis
nxn 1')
XeS
- v o - h
st. r (Aa X)—La t=h--,m Xbp ' IJTXHA P Vjeﬁ
X5o '
T ped” E:?cnuralues of X are Jo.

Da'fq te SDP: c; Au——, Ame Snihl,,,,.,bme?

Feasible set called a “spectrahedron”:

14
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SOS->SDP

Thm:
(

A polynomial p of degree 2d is SOS if and only if 3Q > 0 such that R

p(x) = Q

T )
where z = [1,x1, ey Xy X1X2, xﬁ] is the vector of monomialsof degree up to d.

(It follows that checking membership or optimizing a linear function over the set of
SOS polynomials is an SDP)

Proof: (=) Suppose Qgo st Pa):ZT(l)Qzu) V.
Wye 9 Gl:VT}/ > pa): ZMVTV20) = I/ v 2(1)”2 gl.(t{'racu))l.

re(3)
(@) SUPPost, '9[1) S SOS Q
n_*;] r L r - . 1_ f--—a_-—'-w
Elu,,_,u,,eWL" st pN: %(ﬂfz(*ﬂ = %.(ch tﬂ-) (U&' 2@.}): Z() 2 )Z(n).
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Example

{7’(1): 10 14—-2 '1'-3-_?‘12—!- Gy + 4 Is p SO5 7

-
y E‘E‘]\r C—i“-—"‘*\ ,--E-E\) Find Q};o s.t.
T
ay=["[% * B[ ~lo | -
P " l"x} [1(1 q'u (lz; 1 133 2%3 *
/ ) 95 13 {33 L V. +29,=-%
Vx 29,4, 9,=4
SDP Solver ou*PuT: C),,-_ Hq. 2 =467 :n, ro z“‘[o y
) 5 - paflz oo
-6 -1 [0 Lo
2
2 pe) = 27 (1) Vivaa)= y Uzeu]”"= [" 2 | ] '
2 [ -3)]|«x
x'l

PRINCETON mm Fci) = (1"‘+ 12)2 + ( 2 + %= 311)7

UNIVERSITY =




Let’s revisit two of
our applications!




Optimization over
nonnegative
polynomials

Sum of squares
(SOS)
programming

Semidefinite
programming
(SDP)
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1) Nonconvex unconstrained minimization

F3 PciJ‘a
Find: /sz nf 4'11-% L -!3-16-1- 'IJ.—J“'JL-{-“'}*'!-'IJ “ )

A)eR” N

T )
Pui= 57 & h g
Belk > SDP! c.

1. A, ~-¥ S0S
B s p(nY) P&SSP& =s ‘

p=4*x"2-2.1%x"4+ (1/3) *x 6+1*x*y-4*y~2+4*y~4+x~2*y; solvertime: 0.6 (s)
solvesos (sos (p—gam) , —gam, [ ], [gam]) -

p_sos =
p sos=double (gam)

-2.921560950963582

[inf,z,Q]=solvesos(p-p _sos);

sdisplay(z{1}) ®xstar = p at xstar =
[v,d]=eig(double(Q{1})); -
zxstar=v(:,1)/v(1,1);

xstar=[zxstar(3);zxstar(2)] 1.83259%014475561F -2.921559422066406
p_at xstar=replace(p,[x,vy],[xstar(l),xstar(2)]) —0.922931478421273

PRINCETON ~ m= 19
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2) Automated proof of global asymptotic stability

2k

> o
edu> on behalf of
05
Tue 2/9/2021 1:13 PM
To: Amir Ali Ahmadi A+
Hi Amir Ali, a5k

| hope life and career are going well. [ . ‘ . s ‘ . . | .

| have a question that | assume might take little more than 5-10 of your time but please feel free to let me know if it would actually take more.

Today in class we got into an interesting discussion with students about what a strict Lyapunov function would be for the system

dx/dt = -x +y*3
dy/dt = x

A non-strict Lf.. is easy, V = x*2/2 + y*4/4, with dV/dt = - x*2. One could then deduce g.a.s. by a Barbashin-Krasovskii/Lasalle argument, but that's not
satisfactory.

| started constructing a strict one in real time and it quickly got out of hand, necessitating higher and higher powers and many cross terms. | inevitably
thought of you and your (and Pablo's) SOS program that would spit out a good strict V within seconds.

If you can plug in this system and let me know what comes out, I'd appreciate it, and my 40-50 students in class would learn a few things (complexity of
Lyapunov functions, automated options for finding them, etc.).

Best rei ards

W PRINCETON  mar; 20
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Find V(19) of depree 4 si-

V (n9) SOS
' ’ 5 — SD P.l
-V ('llj) = - <VV('1,3)) ~A+Y ) 5‘03
J=-
- J B 1
sdpvar = v
xdot=-x+y"3; »» sdisplay(clean(double(c) '*m,le-3))
ydot=-x; 1.00000084865%x"2-0.333330248293*x*y+0.16666512414T*y"2+0.500118639025*y"4

[V,c,m]l=polynomial ([x:v],4,2):

Vdot=jacobian (V, [x,v]) * [xdot;ydot] ; — % T2 4
FF=[=zo= (V),s0s (-Vdot) ] V(WJU}_ x - 'gﬂ’j +“gt‘ + ng
solvesos (FF, [1,[1,[c])

2
= ( fx,-_lé_ 9) + %Z g+ L :}‘1‘ (hence posihive definte)

7 {j{ (1044) + L 4% (hence vadially vabuinded)

L , | [ | | , | \/(’liiﬂ = - 5/3 11—-—% 34 (hencg ne,aah'w. Jeﬁi-n‘fe)
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Hilbert’s 1888 Paper
?
Q2: SOS < Nonnegativity

nd| 2 4 | 26
1 |yes|yes|yes

YeSs | yeS | no

2
3 |yes| nho | no

From Logicomix-

>4 |yes | no | ho

Motzkin (1967):

M (a5 oo 32
Robinson (1973):

R (a0, %oty) = 0 (% -1) 423 (L -1 1} (g 1)

PRINCETON mmr + 9_ ‘xl 12‘ 13 ((Ii + 12"" 13 - 2)
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The Motzkin polynomial

M(xz,y) = $2y4 + m4y2 +1— 3$2y2

How to prove it is nonnegative?

(2% + 47+ 1) M(z,) = (ay —y)* + (wy” — 2)* + (%" — 1)*+
1 3
+ E(my? - $39)2 + Z($y3 + $3y — 2:3:y)2

How to prove it is not SOS?

() ’

L coetb W) <°

 Jreoedf(§)) 3o Y950
J

{2 (1)%(1?}\ e

M
Can 'Fﬁ-lf with SDP.

Two sets i p

23
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Hilbert’s 17t" Problem (1900)

2
gi

?
Q. p nonnegative = p = Z
qi

)
"Artin (1927): Yes!
"Implications:

= p > 0 = Jh sos such that p. h sos

= Reznick: (under mild conditions) can take h = (3, x%)"

= Certificates of nonnegativity can always be given with sos
(i.e., with semidefinite programming)!

= \We'll see how the Positivstellensatz generalizes this even
further...

(.-l PRINCETON =
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Outline of the rest of the talk...

Global nonnegativity

— Sum of squares (SOS) and semidefinite programming
— Two applications

— Hilbert’s 17t problem

Nonnegativity over a region

— Positivstellensatze of Stengle and Putinar

— Three applications

Recap and further reading

IIIIIIIIIII
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Positivstellensatz

Artin

(&

-*

p(x) >0,vx e R"

Stenle

Ifp(x) = 0,Vx € R",
then3 sos g s.t.p - g sos. I

PRINCETON mm~
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p(x) >0,
vx €S ={x]|gi(x) =0}

Schu gen

1927 20t century |_1974 | | 1091 || 1993 |
|
Putinar

26



Positivstellensatz: a complete algebraic proof system

=l et’s motivate it with a toy example:

Consider the task of proving the statement:
Va,b,c,z, ar? +bx +c=0=b>—4dac >0

Short algebraic proof (certificate):

b2 — dac = (2azx + b)? — 4a(az® + bz + ¢)

"The Positivstellensatz vastly generalizes what happened here:

= Algebraic certificates of infeasibility of any system of
polynomial inequalities (or algebraic implications among them)

= Automated proof system (via semidefinite programming)
PRINCETON - 27
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Positivstellensatz: a generalization of Farkas lemma

Ax=band x= 0 isinfeasible

)

There exists a y such that yTA=0and y’b < 0.

(The S-lemma is also a theorem of this type for quadratics)

(W PRINCETON == 28
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Stengle’s Positivstellensatz (1974)

S={zxeR" | g1(x) >0,...,9,(x) >0} is empty

iof and only if

there exist sum of squares polynomials so(x),s1(x),..., sm(T), s12(x), s13(2),. .., 123, .m(x)
such that
—1 = r"ﬂ(*f + Z i (*I QE(I + Z ""-"1_:,-(*Jlr .gz QJ(PJ +... T 3123...171(3:)91(3:) "t *91-:1(3:)-
{i.5}

= This is algebraic certificate of emptiness of S

= Works in full generality (no assumptions on S)

= Degree bounds on SOS multipliers based on n, m, deg(g;) only
= Artin’s solution to Hilbert’s 17t problem is a corollary

= Leads to an SDP hierarchy for polynomial optimization

(the ““Parrilo hierarchy’’)
PRINCETON ma 29
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Putinar’s Positivstellensatz (1993)

p(x) >0onS={xeR" g;(x) 20,i=1,.. m}

easy direction ﬂ U under the “Archimedean condition”
(slightly stronger than compactness of S)

de > 0 and SOS polynomials s¢(x), ..., Sy, () such that
p(x) — € =s9(x) + 2;5:(x)g:i(x).

This is algebraic certificate of positivity

Leads to an SDP hierarchy for polynomial optimization
(the “"Lasserre hierarchy’’)

Degree bounds on SOS multipliers based on the coefficients
(though in special cases, better degree bounds possible)

PRINCETON ==
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How did | plot this?

e For what values of a, b is the following polynomial monotone over [0,1]?

p(x) =x*+ax3+ bx? — (a + b)x

Theorem. A polynomial p(x) of degree 2d is monotone on [0,1]
if and only if

p'(x) = x51(x) + (1 = x)s,(x),

where s;(x) and s,(x) are some SOS polynomials of degree 2d — 2.

-3 PRINCETON —— 31
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Let’s end with 3

applications:
e Finance
e Control

e Learning dynamical
systems

; ]
UNIVERSITY mm.

Optimization over
nonnegative
polynomials

Sum of squares
(SOS)
programming

Semidefinite

programming
(SDP)




Distributionally robust optimization

What'’s the probability that Zoom’s stock goes bust?

"Three months starting Feb 1, 2020

160 A

Pi— P
P

=
ka2
[==]

price ()

=Empirical moments m;, = E[r*]:
m1 = 0.0068, mo = 0.0034,

ms =2x10"% my=5x%x 107"

=
[
L=

=

&0

M o ® 0 1 { M
day

*The distribution of r is supported on [-0.4,0.4] but is otherwise unknown
=\What is the probability that Zoom’s stock return will be below -0.1 today?

="\Want the worst-case probability over all distributions whose first 4

moments are within 10% of those computed from data.
PRINCETON mm 33

UNIVERSITY =



Sum of squares optimization can compute this probability!

a = inf
q,7,8,7
1
st.  qlx) = quxk is a degree-4 (univariate) polynomial,
k=0

$x)

r(x),s(x) are quadratic polynomials that are sos,
4 v *

4
q°+zq’cm§ci7vmﬁc€[0-9mk,1-1mk}forkzl,...,4 04 01| o4
k=1

q(x) — (0.4° — 2°) s(x) is sos, I_—_> q(x
q(x) —1—(04+2)(=0.1 —2)r(x) is sos. |:> q(x

s

Va € [-0.4,0.4]
Vi e [-0.4, —O.l]l

z) =
e
P(r € [-0.4,—0.1]) = E[1{_g4-01]] = l{-04-01] < q(x) Vx E[ 0.4,0.4]

= E[1[-04,-01]] < Elq(x)] = Z QM <Y

In fact, we always have q"(r) — 1104, 01)(r)

P(r € [-0.4,—0.1]) = « P(r e [-04,— 0-1]) <a
Cptimizer terminated. Time: 0.17
alpha =

1
0.2073

r —
(-8 PRINCETON [ 1 V¥ T —Cr % T
'UNIVERSITY A 0.4 -0.1 0027 0174 0.4 34



SOS proofs of local asymptotic stability (LAS)

T = f(:r:,'u,)

V(x) >0 7Y Z R 1 1
Vix) < B =2V(x) = VV(x)Tf(x u) < 0

e Deals with nonlinear systems directly.
e Gives easily-verifiable proofs of stability
in a fully-automated fashion.

PRINCETON mm~
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Local stability — SOS on the Acrobot

Swing-up:

‘Balance:

Controller
designed by SOS

(w/ Majumdar and Tedrake)
PRINCETON mm 36
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Stabilizing a humanoid robot on one foot

= f(z,u) 30 states 14 control inputs Cubic dynamics

Vix) >0
VX)) <B=2VH) =V Tf(x,u) <0

PRINCETON mm (W/ Majumdar and Tedrake) 37
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* Goalistolearn a dynamical system
x = f(x) (where f:R" - R")

from a limited number of noisy
measurements of its trajectories.

Examples of “side information”:

e Equilibrium points (and their
stability)

* Invariance of certain sets

* Decrease of certain energy functions

* Sign conditions on derivatives of
states

* Having gradient structure

* Monotonicity conditions

* Incremental stability

* (Non)reachability of a set B from a
set A, ...
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Parametrize a polynomial vector field
p: R - R",

Use SOS optimization to impose side
information as constraints on p.

Pick the p that best explains the data.



An epidemiology example

A model from the epidemiology
literature for spread of Gonorrhea in
a heterosexual population:

x(t): fraction of infected males at time t
y(t): fraction of infected females at time t

a,: recovery rate of males

[y

x=fi(x,y) = —a;x + by (1 —x)y

a,: recovery rate of females

y=fo(x,y) = —ay + b,(1—y)x | b
b,:infection rate of females

:infection rate of males

[y

For our experiments:

This is taken to be “the ground truth”. ..~ w0
e The dynamics (both its parameters and g e T
its special structure) is unknown to us. TN— NN
e We only get to observe noisy trajectories ~ “[ x| |
of this dynamical system. ol NN

Pe NS \ \ \ ‘\\ \ \ \‘,\ \ \\,y \
£ PRINCETON  =&7 0.0 02 04 06 08 10
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The setup

* The true dynamics f is unknown

 What we observe:
Noisy measurements of the
vector field on 20 points from a
single trajectory starting from
[0.7;0.3]

e Goal:

* Learn a polynomial vector
field p that best agrees with
the observed trajectory

* Incorporate side information
to generalize better to
unobserved trajectories

(.-l PRINCETON -
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Learning p of degree 3

Least squares solution

The true dynamics f (unknown)

N

/

N

/ﬁw

T
o
~

ww\\ljy

fi

77
\ x N i

772

f
*
(<]

d trajectory. Terrible

observe

the

e Good performance on
elsewhere.

f(0)=0

than one!

more

ot go negative or

of infected individuals cann

ction

Fra




Learning p of degree 3

The true dynamics f (unknown) Least squares solution subject to

N

7

A W == .\

p(0) = 0, unit square invariant

%

‘ 1
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Side information: directional monotonicity

The true dynamics f (unknown)

aflg; 2 > 0,V(x,y) € [0,1]?
df2(x,y)
r— 0,V(x,y) € [0,1]°

We want p to satisfy the same
constraints!

. 1]
UNIVERSITY mm.



Learning p of degree 3

Least squar n subject to
The true dynamics f (unknown) p(0) = 0, unit square invariant,
directional monoton icity

vz

/f~\‘\§

\
N

. 1]
UNIVERSITY mm.



Let’s learn p of degree 2

oluti

f (unknown) p(0) = 0, unit square invariant

subject to

directiona

dynamics

The true

\

! 'S

| -

1 | o =
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The SDP that is being solved in the background

min Z (F(x,;) :E(a,y))
7"( )J§(F)<3

g0 @y St B(ee)=e, PB(or)=o J

6,50,

dog @) < 2 P (o,}):}o-:o});f(:-})a-,(})fg X
0o, 00, 5093 [x:o,a(\}sl—:;’x?‘,o}

(+ three Similar Cons'I-mai-:‘ff)

9} A on

o, 3S0S, 0, 0,0, 70

N A
DR ()= 0 (9)1 G -t 6 ct-ﬂ‘;%
(Sfmffaf'; For };‘_’L{.qn,aj) b[ <AL, °(‘}<lﬁg?‘ (X’i‘j)?ﬁl
P
Output of SDP solver:

p1=0.2681*x"3 - 0.0361*x"2*y - 0.095*x*y"2 + 0.1409*y”3 - 0.4399*x"2 + 0.0956*x*y - 0.0805*y"2 + 0.1232*x + 0.0201*y
p2=0.1188*x"3 + 0.2606*x"2*y + 0.2070*x*y"2 + 0.0005*y”3 - 0.3037*x"2 - 0.4809*x*y -0.099*y"2+ 0.2794*x+0.01689*y
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Existence of constrained polynomial dynamics close to f

[AAA, El Khadir]. For any continuously differentiable vector field
f:R" > R" any T > 0,e > 0, and any compact set ) € R",

there exists a polynomial vector field p: R™ — R" such that

1) trajectorles of f and p starting from any initial conditions x, € Q
remain within € for all time t € [0, T] (as long as they stay in Q)

2) p satisfies any combination of the following constraints if f does:

a. equilibria at a given finite set of points (p(v;) = 0),
b. invariance of a basic semialgebraicset B = {x € R"|g;(x) = 0}, where
each g; is concave (assumption can be relaxed),

c. directional monotonicity on a compact set(

)>0VxEQ,
d. nonnegativity on a compact set (p;(x) = 0, Vx € D).

Moreover, all such properties of p come with an SOS certificate.
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Recap: “See an inequality? Think SOS!”

Isp(x) 200n{g:(x) 20, ..,gm(x) = 0}?

Automated SOS-based proofs via SDP!

Many applications!
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Want to learn more?

Imperial College Press Optimization Series @

Moments, Positive
Polynomials and
Their Applications

..........
EBEANAE SR

IEERARAS S

Jean Bernard Lasserre

SUMS OF SQUARES, MOMENT MATRICES AND Applications of sums of squares
OPTIMIZATION OVER POLYNOMIALS
MONIQUE LAURENT* Georgina Hall
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