Name:_

PRINCETON UNIVERSITY

ORF 523 Midterm Exam 1, Spring 2019

March 12, 2019, from 1:30 pm to 2:50 pm

Instructor:

A.A. Ahmadi

AI: C. Dibek

PLEASE DO NOT TURN THIS PAGE. START THE EXAM ONLY WHEN YOU ARE INSTRUCTED TO DO SO.

- 1. You are allowed a single sheet of A4 paper, double sided, hand-written or typed.
- 2. No electronic devices are allowed (e.g., cell phones, calculators, laptops, etc.).
- 3. All questions should be answered in the booklet. Please write out and sign the following pledge on the booklet: "I pledge my honor that I have not violated the honor code during this examination."
- 4. Each problem has 25 points. You can cite results shown in lecture or on problem sets without proof.
- 5. Good luck!

For True/False questions, a proof or a counterexample is required.

Problem 1:

Specify whether each of the following statements is true or false.

- (i) The set of points that are closer to a point $\bar{x} \in \mathbb{R}^n$ than a set $S \subseteq \mathbb{R}^n$ is convex.
- (ii) The set of points that are farther from a point $\bar{x} \in \mathbb{R}^n$ than a set $S \subseteq \mathbb{R}^n$ is convex.
- (iii) The set of points that are closer to a set $S \subseteq \mathbb{R}^n$ than another set $T \subseteq \mathbb{R}^n$ is convex.

Problem 2:

Let $\Omega \subset \mathbb{R}^n$ be a compact convex set and $f : \mathbb{R}^n \to \mathbb{R}$ be a convex (continuous) function. Consider the following two optimization problems:

minimize
$$f(x)$$
 (1) maximize $f(x)$
subject to $x \in \Omega$, (2) subject to $x \in \Omega$.

Specify whether each of the following statements is true or false.

- (i) There is an optimal solution to (1) at an extreme point of Ω .
- (ii) There is an optimal solution to (2) at an extreme point of Ω .

Hint: If needed, you can use the fact (without proof) that a compact convex set has at least one extreme point and equals the convex hull of its extreme points.

Problem 3:

Let $\alpha_1, \ldots, \alpha_n$ be nonnegative integers. Give a simple necessary and sufficient condition based on these numbers for the monomial function $x_1^{\alpha_1} x_2^{\alpha_2} \ldots x_n^{\alpha_n}$ to be convex.

Problem 4:

Show that any closed convex set $\Omega \subseteq \mathbb{R}^n$ can be written as $\Omega = \{x \in \mathbb{R}^n | g(x) \le 0\}$ for some convex function $g : \mathbb{R}^n \to \mathbb{R}$.