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1. Please write out and sign the following pledge on top of the first page of your exam:

“I pledge my honor that I have not violated the Honor Code or the rules specified by the

instructor during this exam.”

2. The exam is not to be discussed with anyone except possibly the professor and the AIs. You

can only ask clarification questions as public (and preferably non-anonymous) questions on

Piazza. No emails.

3. You are allowed to consult the lecture notes and videos, your own notes, the problem sets and

their solutions (yours and ours), the midterm exams and their solutions (yours and ours), the

practice exams and their solutions, past Piazza questions and answers, but nothing else. You

can only use the Internet in case you run into problems related to software. (There should

be no need for that either hopefully.)

4. For all problems involving a coding element, show your code. The output that you present

should come from your code.

5. The exam is to be submitted on Blackboard before Friday, May 15, at 10 AM EST.

6. Some problems might be harder than others and there is no particular order. Please be

rigorous, brief, and to the point in your answers. Good luck!



Problem 1: What is the probability that Zoom’s stock goes bust?

Figure 1: Zoom’s stock price

You have noticed that Zoom has been growing in popularity recently (see Figure 1), and

you wonder whether you should buy their stock. You download daily stock prices for the

duration of three months starting from February 1, 2020 (excluding non-trading days) and

compute the daily returns as

ri =
Pi − Pi−1

Pi
, i = 1, . . . , 61,

where Pi is the price of the stock on day i. You assume that the daily returns ri are

independent copies of a random variable r with unknown distribution supported on the

interval [−0.4, 0.4] (i.e., the daily returns never fall below −40% or go above 40%). From the

data and for k = 1, . . . , 4, you compute the empirical means mk of the k-th moment E[rk]

of r:

m1 = 0.0068,m2 = 0.0034,m3 = 2× 10−6,m4 = 5× 10−5. (1)

Given that you are risk averse, you decide that you should buy Zoom’s stock only if the

probability that daily returns go below −0.1 is small. The problem, however, is that you do

not know how to compute this probability as you don’t know the distribution of the daily

returns. You decide instead to compute the worst-case probability over all distributions

whose first 4 moments are within 10% of those you have computed from data.
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1. Let
α := inf

q,r,s,γ
γ

s.t. q(x) =
4∑

k=0

qkx
k is a degree-4 (univariate) polynomial,

r(x), s(x) are quadratic polynomials that are sos,

q0 +
4∑

k=1

qkm
′
k ≤ γ ∀m′k ∈ [0.9 mk, 1.1 mk] for k = 1, . . . , 4,

q(x)−
(
0.42 − x2

)
s(x) is sos,

q(x)− 1− (0.4 + x)(−0.1− x)r(x) is sos.

Show that

P(r ∈ [−0.4,−0.1]) ≤ α,

if the probability is calculated with respect to any distributions on r whose first 4

moments are within 10% of your empirical moments in (1).

Hint: Use the basic fact that for any interval [a, b], P(r ∈ [a, b]) = E[1[a,b](r)], where

1[a,b](r) is equal to 1 if r ∈ [a, b] and 0 otherwise.

2. Compute α to 4 digits after the decimal point.

3. You wonder if the bound α you got from the above problem is overly pessimistic. Find

a discrete distribution of returns (i.e., points x1, . . . , xN ∈ [−0.4, 0.4] and probabilities

p1, . . . , pN ∈ [0, 1] summing to one) such that

i) The moments of your discrete distribution are within 10% of the empirical mo-

ments of r, i.e., |
∑N

i=1 pix
k
i −mk| ≤ mk

10
, k = 1, . . . , 4,

ii) The probability assigned by your discrete distribution to the interval [−0.4,−0.1]

is equal to α; i.e.,

∑
i∈I

pi = α, where I = {i ∈ {1, . . . , N} | xi ∈ [−0.4,−0.1]}.1

Hint: If q∗ is the quartic polynomial that your solver returns for part 1, a plot of

q∗ − 1[−0.4,−0.1] can help you find the points x1, . . . , xN .

1To avoid numerical issues, any discrete distribution that assigns to the interval [−0.4,−0.1] a probability

larger or equal than 0.99α is acceptable.
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Problem 2: Complexity aspects of optimality conditions

1. Consider the decision problem CRITICAL-d:

Given a polynomial p : Rn → R of degree d with rational coefficients, decide if it has

a critical point, i.e., a point x̄ ∈ Rn such that ∇p(x̄) = 0.

Show that CRITICAL-d is in P if d < 3 and NP-hard if d ≥ 3.

Hint: Observe that when d = 3, the condition ∇p(x) = 0 gives a set of quadratic

equations, but not an arbitrary one! See if you can get around this issue by introducing

new variables.

2. What is the largest value of d for which the following statement is true for any poly-

nomial p : Rn → R of degree d and any point x̄ ∈ Rn?

Op(x̄) = 0,O2p(x̄) � 0 ⇐⇒ x̄ is a strict local minimum for p.

Fully justify your answer.

3. Consider the decision problem STRICT-LOCAL-d:

Given a polynomial p : Rn → R of degree d with rational coefficients and a point

x̄ ∈ Qn, decide if x̄ is a strict local minimum for p.

Show that STRICT-LOCAL-d is in P if d = 1, 2, or 3. (We have seen in class that

STRICT-LOCAL-4 is NP-hard.)

Hint: You can use the fact that the determinant of a matrix with rational entries can

be computed in time polynomial in the bit size of the entries of the matrix.
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Problem 3: Best subset selection in penalized and constrained forms2

Let A ∈ Rm×n and b ∈ Rm be fixed. For parameters λ > 0 and δ > 0, consider the following

two popular optimization problems in modern statistics which aim for a sparse approximate

solution to a system of linear equations:

Pλ : inf
x∈Rn

‖Ax− b‖22 + λ‖x‖0,
Cδ : inf

x∈Rn
‖Ax− b‖22

s.t. ‖x‖0 ≤ δ.

Here ‖ · ‖0 denotes the l0 pseudo-norm of a vector, i.e., the number of its nonzero entries.

Let Ω(Pλ) (resp. Ω(Cδ)) denote the set of optimal solutions of problem Pλ (resp. Cδ).

True or False? If “True”, provide a proof. If “False”, provide a counterexample and

justify why your counterexample is valid.

1. ∀λ > 0, Ω(Pλ) is nonempty.

2. ∀δ > 0, Ω(Cδ) is nonempty.

3. ∀λ > 0,∃δ > 0 such that Ω(Pλ) = Ω(Cδ).

4. ∀λ > 0,∀x ∈ Ω(Pλ),∃δ > 0 such that x ∈ Ω(Cδ).

5. ∀δ > 0,∃λ > 0 such that Ω(Cδ) = Ω(Pλ).

6. ∀δ > 0,∀x ∈ Ω(Cδ),∃λ > 0 such that x ∈ Ω(Pλ).

2We thank Sinem Uysal for suggesting this problem.
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Problem 4: Accounting for nonlinearity and modeling error in stability analysis

It is common in control theory to approximate an unknown dynamical system with a linear

model, but also to account for nonlinear effects by adding a bounded unknown nonlinear

term. More precisely, the dynamics is modelled as

xk+1 = Axk + g(xk), (2)

where A ∈ Rn×n is a fixed and g : Rn → Rn is an unknown continuous function satisfying

‖g(x)‖ ≤ γ‖x‖ ∀x ∈ Rn (3)

for some fixed scalar γ > 0. An important problem in control is to check whether x = 0 is a

globally asymptotically stable equilibrium point of the dynamics in (2) for any choice of the

function g verifying (3). In order to check this property, one can search for a (homogeneous

and coercive) quadratic Lyapunov function V : Rn → R satisfying

V (Ax+ g(x)) < V (x) ∀x 6= 0, and for any function g verifying (3). (4)

1. Formulate the search for such a Lyapunov function as an SDP feasibility problem.

2. A series of chemical reactions

C1 → C2 → C3→

between three chemical compounds C1, C2, and C3 can be modeled by a dynamical

system of the type in (2), where xk is a 3×1 vector whose ith component xk,i represents

the concentration of chemical compound i at time k. Here, the matrix A is given by

1

2

1 0 0

1 1 0

0 1 1

 ,

representing that at each time step, half of C1 converts to C2, half of C2 converts to

C3, and half of C3 vanishes. The function g : R3 → R3 is unknown and represents the

hard-to-model nonlinear interactions between the chemical compounds.

What is the largest value of γ (to two digits after the decimal point) such that if

||g(x)|| ≤ γ‖x‖ ∀x ∈ R3,

then all chemical concentrations go to zero irrespective of their initial concentrations?

Hint: To find lower (resp. upper) bounds on this critical value of γ, leverage part 1

(resp. focus on functions g that are linear).
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Problem 5: Convex optimization applied to nonconvex problems

Consider the optimization problem

inf
x∈Rn

f0(x)

s.t. fi(x) ≤ 0, i = 1, . . . ,m,
(5)

whose feasible set is nonempty and compact. Suppose for i = 0, . . . ,m, the functions fi :

Rn → R can be written as fi(x) = gi(x) − hi(x), where gi : Rn → R and hi : Rn → R are

all convex functions, hi’s are all differentiable, and g0 is a strictly convex function. Consider

the following algorithm for approximately solving (5):

Algorithm 1

Input: the functions gi(x), hi(x) for i = 0, . . . ,m, a vector x0 ∈ Rn which is feasible to (5),

a positive integer N .

Output: a vector xN ∈ Rn.

1: procedure

2: k ← 0

3: while k < N do

4: Let fki (x) ..= gi(x)−
(
hi(xk) +∇hi(xk)T (x− xk)

)
, i = 0, . . . ,m

5: Solve the optimization problem: inf
x∈Rn

fk0 (x), s.t. fki (x) ≤ 0, i = 1, . . . ,m

6: Let xk+1 denote its optimal solution

7: k ← k + 1

8: end while

1. Show that the optimization problem solved in each iteration of Algorithm 1 is a convex

optimization problem and has a unique optimal solution.

Hint: You can use the fact that (globally) convex functions are continuous.

2. Preserving feasibility. Show that the points x1, . . . , xN generated by Algorithm 1 are

all feasible to (5).

3. The descent property. Show that the points x1, . . . , xN generated by Algorithm 1 satisfy

f0(xk+1) ≤ f0(xk) for k = 0, . . . , N − 1.

4. Show that any nonconstant polynomial f can be written as f(x) = g(x)− h(x), where

g and h are strictly convex polynomials whose degree is at most one higher than f .

(Hence, when f0, . . . , fm in (5) are polynomials, Algorithm 1 is applicable.)
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