
ORF 523 Problem set 1 Spring 2024, Princeton University
Instructor: A.A. Ahmadi
AIs: A.Z. Chaudhry, Y. Hua
Due on February 15, 2024, at 1:30pm EST, on Gradescope

Problem 1: Image compression and remembering John Horton Conway
In remembrance of John Conway1, we study the problem of compressing the following image
of him.

Figure 1: John Horton Conway. The image to be compressed.

To do this compression, we introduce you to the concept of singular value decomposition
(SVD) which is arguably one of the most important topics in computational linear algebra.
This question covers one application of this concept in image processing, but the SVD has
many other applications, notably in statistics (principal component analysis).
Let A be a real m×n matrix of rank r. (Recall that the rank of A is the number of linearly
independent columns of A.) The singular value decomposition of A is a decomposition of
the form

A = UΣV T ,

where U,Σ, and V are respectively m×m,m×n, and n×n; U and V are orthogonal matrices
(i.e., satisfy UTU = I and V TV = I), and Σ is a matrix with r positive scalars σ1, . . . , σr on

1John Conway (1937–2020) was an English mathematician and a Professor of Mathematics at Princeton
University. He is known for his fundamental contributions to numerous areas of mathematics. You may
enjoy reading about Conway here, or playing his Game of Life here.
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the diagonal of its upper left r × r block and zeros everywhere else. The scalars σ1, . . . , σr

are called the singular values of A. They are given as

σi =

√
i-th eigenvalue of ATA,

and by convention they appear in descending order:

σ1 ≥ σ2 ≥ . . . ≥ σr.

The columns of U and V are respectively called the left and right singular vectors of A and
can be obtained by taking an orthonormal set of eigenvectors2 for the matrices AAT and
ATA. In Matlab, the command svd handles these eigenvector computations for you and
outputs the three matrices U,Σ, V . In Python, this can be done by np.linalg.svd.
First, you need to answer some very basic questions about the SVD.

1. (a) Show that eigenvalues of ATA are always nonnegative. (Hence singular values
are well-defined as real, nonnegative scalars.)

(b) Show that if A is symmetric then the singular values of A are the same as the
absolute value of the eigenvalues of A.

What does this have to do with optimization? Let A be a real m × n matrix with
an SVD given by A = UΣV T defined as above. For a positive integer k ≤ min{m,n}, we let
A(k) denote an m×n matrix which is an “approximation” of the matrix A obtained from its
top k singular values and singular vectors. Formally, we have

A(k) : = U(k)Σ(k)V
T
(k),

where U(k) has the first k columns of U , V(k) has the first k columns of V , and Σ(k) is the
upper left k × k block of Σ.

2. Consider the optimization problem:

min .
B∈Rm×n,rank(B)≤k

∥A− B∥2.

Here, ∥.∥2 denotes the spectral norm of a matrix defined as ∥C∥2 = max
∥x∥2=1

∥Cx∥2.
Show that the matrix A(k) is an optimal solution to the optimization problem above.

2By an orthonormal set of vectors we mean a collection of vectors that are pairwise orthogonal and each
have 2-norm equal to one.
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(Hint: You may want to first prove that the spectral norm of a matrix is unitarily
invariant, i.e., it does not change when the matrix is multiplied from left or right by
an orthogonal matrix. You may also want to use the following fact from linear algebra:
For any matrix E ∈ Rm×n, rank(E) + dim null(E) = n.)

In words, the result you are proving states that among m×n matrices of rank at most k, the
matrix A(k) obtained from truncating the SVD best approximates A in the spectral norm.
The benefit in approximating a matrix with low-rank matrices is that low-rank matrices
admit a much more succinct representation. It turns out that the same result holds for the
Frobenius norm; i.e., the matrix A(k) is an optimal solution to the following optimization
problem:

min .
B∈Rm×n,rank(B)≤k

∥A− B∥F .

(Recall that the Frobenius norm of a matrix is defined as ∥C∥F =
√∑

i,j C
2
i,j.) Let’s see how

this applies to our image compression problem.

Download the file conway.jpg into your Matlab path. You can read this in by typing:

1 A=imread ( ‘ conway . jpg ’ ) ;
2 A=im2double (A) ;
3 A=rgb2gray (A) ;

If you are using Python, you may wish to use the package pillow and numpy:

1 from PIL import Image
2 import numpy as np
3 image = Image . open ( ‘ conway . jpg ’ )
4 A = np . ar ray ( image , dtype=f l o a t ) / 255 .0
5 A = np . dot (A, [ 0 . 2 9 8 9 , 0 . 5870 , 0 . 1 1 4 0 ] )

The result is a 1120×960 matrix A, with each entry representing a single pixel in the picture
with a number between 0 and 1. To upload this picture on Instagram for example, you would
need to upload 1120× 960 = 1075200 numbers (pixels).

3. For k = 40, 80, 120, 160, use Matlab to compute A(k) as defined above. Report the
value of ∥A− A(k)∥F in each case. (Include your code for this part and the next.)

4. Use the commands subplot and imshow (you need to import the matplotlib package in
Python) to produce on the same figure the original image, as well as your compressed
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images A(k) for k = 40, 80, 120, 160. Label your subplots. In addition, produce two
separate plots demonstraing (i) ∥A − A(k)∥F versus k, and (ii) “total savings” versus
k. Total savings is to be interpreted as the answer to the question: How many fewer
numbers do you need in order to store A(k) than you did to store A? Explain why this
number is equal to mn− (n+m+ 1)k. How much are you saving for k = 160?

5. Use the Matlab function imwrite or the Python command image.save to create two
images from imshow(A) and imshow(A(160)). Can you tell them apart?

Problem 2: True or False?
If “True,” provide a proof. If “False,” provide a counterexample and justify why your coun-
terexample is valid.

1. A point x̄ ∈ Rn is a local minimum of a quadratic (i.e., degree-2) polynomial p : Rn → R
if and only if there are no descent directions3 at x̄.

2. A point x̄ ∈ Rn is a local minimum of a cubic (i.e., degree-3) polynomial p : Rn → R
if and only if there are no descent directions at x̄.

3. Suppose Ω ⊆ Rn is a closed convex set and c is a vector in Rn. Consider the problem
of minimizing cTx over Ω. If this problem has a finite optimal value, then it has an
optimal solution.

Problem 3: Norms, dual norms, and induced norms (see notes)

1. Let Q ∈ Sn×n and assume Q ≻ 0. Show that

f(x) =
√

xTQx

is a norm.

2. Show that Q−1 exists and is positive definite. Show that the dual norm of f is given
by

g(x) =
√
xTQ−1x.

(Hint: You may want to bring in
√
Q, i.e., a matrix whose square is Q. If you do, you

have to first prove that this matrix exists.)
3We recall that a direction d ∈ Rn is a descent direction for the function p at the point x̄ if there exists

a scalar ᾱ > 0 such that p(x̄+ αd) < p(x̄) for all α ∈ (0, ᾱ).
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3. Let A ∈ Rm×n. Prove the following expression for its induced 2-norm:

∥A∥2 =
√

λmax(ATA).

Problem 4: Properties of positive semidefinite matrices
Prove or disprove the following statements. All matrices are symmetric, n×n, and with real
entries.
(a) Suppose A ⪰ 0. Then the largest entry in absolute value of A must be on the diagonal.4

(b) If A ⪰ 0 and trace(A) = 0, then A = 0.
(c) If A ⪰ 0, B ⪰ 0, and A+B = 0, then A = B = 0.
(d) If A ⪰ 0, B ⪰ 0, and AB = 0, then A = 0 or B = 0.
(e) Suppose xTAx ≥ 0 for all x ≥ 0, then either A ≥ 0 or A ⪰ 0. (Here, “≥” denotes an
entrywise nonnegativity constraint.)

4In other words, the largest entry of |A| must be on the diagonal, where |A| is the matrix whose entries
are the absolute values of those of A.
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