ORF 523	Problem set 5	Spring 2024, Princeton University
Instructor: A.A. Ahmadi		
AIs: A.Z. Chaudhry, Y. Hua		
Due on April 18, 2024, at 1:30pm EST, on Gradescope		

Problem 1: The Lovász sandwich theorem

The Lovász sandwich theorem states that for any graph G(V, E), with |V| = n, we have

$$\alpha(G) \underset{(1)}{\leq} \vartheta(G) \underset{(2)}{\leq} \chi(\bar{G})$$

where

- $\alpha(G)$ is the stability number of G (i.e., the size of its largest independent set(s)),
- $\vartheta(G)$ is the Lovász theta number; i.e., the optimal value of the SDP

$$\begin{split} \vartheta(G) &:= \max_{X \in S^{n \times n}} \operatorname{Tr}(JX) \\ \text{s.t. } \operatorname{Tr}(X) &= 1, \\ X_{i,j} &= 0, \text{ if } \{i, j\} \in E \\ X \succeq 0, \end{split}$$

- $\chi(H)$ is the coloring number of H, that is the minimum number of colors needed to color the nodes of a graph H such that no two adjacent nodes get the same color, and
- \overline{G} is the complement graph of G, i.e., a graph on the same node set which has an edge between two nodes if and only if G doesn't.
- 1. We proved inequality (1) in class. Prove inequality (2). Hint: You may want to first show that the optimal value of the following SDP also gives $\vartheta(G)$:

$$\min_{Z \in S^{(n+1)\times(n+1)}} Z_{n+1,n+1}$$

s.t. $Z_{n+1,i} = Z_{ii} = 1, \ i = 1, \dots, n$
 $Z_{ij} = 0$ if $\{i, j\} \in \overline{E}$
 $Z \succ 0.$

2. Given an example of a graph G where neither inequality (1) nor inequality (2) is tight.

Problem 2: Comparison of LP and SDP relaxations

For a graph G(V, E), with |V| = n, we saw in class that an SDP-based upperbound for the stability number $\alpha(G)$ of the graph is given by $\vartheta(G)$ (as defined in Problem 1). We also saw that alternative upperbounds on the stability number can be obtained through the following family of LP relaxations:

$$\eta_{LP}^{k} := \max \sum_{i=1}^{n} x_{i}$$

s.t. $0 \le x_{i} \le 1, \ i = 1, \dots, n$
 $C_{2} \dots, C_{k},$

where C_k contains all clique inequalities of order k, i.e. the constraints

$$x_{i_1} + \ldots + x_{i_k} \le 1$$

for all $\{i_1, \ldots, i_k\} \in V$ defining a clique of size k.

1. Show that for any graph G, we have $\vartheta(G) \leq \eta_{LP}^k \ \forall k \geq 2$. Hint: You may want to show that $\vartheta(G)$ can also be obtained as the optimal value of the following optimization problem:

$$\max_{Y \in S^{(n+1)\times(n+1)}} \sum_{i=1}^{n} Y_{ii}$$

s.t. $Y \succeq 0$,
 $Y_{n+1,n+1} = 1$,
 $Y_{n+1,i} = Y_{ii}, i \in V$,
 $Y_{ij} = 0$, if $(i, j) \in E$

2. The file Graph.mat contains the adjacency matrix of a graph G with 50 nodes (depicted above). Compute $\vartheta(G)$, η_{LP}^2 , η_{LP}^3 , η_{LP}^4 and $\alpha(G)$ for this graph. You can directly load the data file in MATLAB. In Python, you can use the following code to do this.

² mat = scipy.io.loadmat('Graph.mat')

$$_{3} G = mat['G']$$

3. Present a stable set of maximum size. Prove or disprove the claim that this graph has a unique maximum stable set.

Problem 3: Shannon capacity of graphs

- 1. Consider two graphs G_A and G_B (with possibly a different number of nodes) and denote their adjacency matrices by A and B respectively. Express the adjacency matrix of their strong graph product $G_A \otimes G_B$ in terms of A and B.
- 2. Compute the Shannon capacity of the graph given in Problem 2.2.