Due on April 18, 2024, at 1:30pm EST, on Gradescope

Problem 1: The Lovász sandwich theorem

The Lovász sandwich theorem states that for any graph $G(V, E)$, with $|V|=n$, we have

$$
\alpha(G) \underset{(1)}{\leq} \vartheta(G) \underset{(2)}{\leq} \chi(\bar{G})
$$

where

- $\alpha(G)$ is the stability number of G (i.e., the size of its largest independent set(s)),
- $\vartheta(G)$ is the Lovász theta number; i.e., the optimal value of the SDP

$$
\begin{aligned}
\vartheta(G):= & \max _{X \in S^{n \times n}} \operatorname{Tr}(J X) \\
& \text { s.t. } \operatorname{Tr}(X)=1, \\
& X_{i, j}=0, \text { if }\{i, j\} \in E \\
& X \succeq 0,
\end{aligned}
$$

- $\chi(H)$ is the coloring number of H, that is the minimum number of colors needed to color the nodes of a graph H such that no two adjacent nodes get the same color, and
- \bar{G} is the complement graph of G, i.e., a graph on the same node set which has an edge between two nodes if and only if G doesn't.

1. We proved inequality (1) in class. Prove inequality (2).

Hint: You may want to first show that the optimal value of the following SDP also gives $\vartheta(G)$:

$$
\begin{aligned}
& \min _{Z \in S^{(n+1) \times(n+1)}} Z_{n+1, n+1} \\
& \text { s.t. } Z_{n+1, i}=Z_{i i}=1, i=1, \ldots, n \\
& Z_{i j}=0 \text { if }\{i, j\} \in \bar{E} \\
& Z \succeq 0 .
\end{aligned}
$$

2. Given an example of a graph G where neither inequality (1) nor inequality (2) is tight.

Problem 2: Comparison of LP and SDP relaxations

For a graph $G(V, E)$, with $|V|=n$, we saw in class that an SDP-based upperbound for the stability number $\alpha(G)$ of the graph is given by $\vartheta(G)$ (as defined in Problem 1). We also saw that alternative upperbounds on the stability number can be obtained through the following family of LP relaxations:

$$
\begin{aligned}
\eta_{L P}^{k}:= & \max \sum_{i=1}^{n} x_{i} \\
& \text { s.t. } 0 \leq x_{i} \leq 1, i=1, \ldots, n \\
& C_{2} \ldots, C_{k},
\end{aligned}
$$

where C_{k} contains all clique inequalities of order k, i.e. the constraints

$$
x_{i_{1}}+\ldots+x_{i_{k}} \leq 1
$$

for all $\left\{i_{1}, \ldots, i_{k}\right\} \in V$ defining a clique of size k.

1. Show that for any graph G, we have $\vartheta(G) \leq \eta_{L P}^{k} \forall k \geq 2$.

Hint: You may want to show that $\vartheta(G)$ can also be obtained as the optimal value of the following optimization problem:

$$
\begin{aligned}
& \max _{Y \in S^{(n+1) \times(n+1)}} \sum_{i=1}^{n} Y_{i i} \\
& \text { s.t. } Y \succeq 0, \\
& Y_{n+1, n+1}=1, \\
& Y_{n+1, i}=Y_{i i}, i \in V, \\
& Y_{i j}=0, \text { if }(i, j) \in E .
\end{aligned}
$$

2. The file Graph .mat contains the adjacency matrix of a graph G with 50 nodes (depicted above). Compute $\vartheta(G), \eta_{L P}^{2}, \eta_{L P}^{3}, \eta_{L P}^{4}$ and $\alpha(G)$ for this graph. You can directly load the data file in MATLAB. In Python, you can use the following code to do this.
```
import scipy
2 mat = scipy.io.loadmat('Graph.mat')
3 G = mat['G']
```

3. Present a stable set of maximum size. Prove or disprove the claim that this graph has a unique maximum stable set.

Problem 3: Shannon capacity of graphs

1. Consider two graphs G_{A} and G_{B} (with possibly a different number of nodes) and denote their adjacency matrices by A and B respectively. Express the adjacency matrix of their strong graph product $G_{A} \otimes G_{B}$ in terms of A and B.
2. Compute the Shannon capacity of the graph given in Problem 2.2.
