
ORF 523 Problem set 6 Spring 2024, Princeton University
Instructor: A.A. Ahmadi
AIs: A.Z. Chaudhry, Y. Hua
Due on May 2, 2024, at 1:30pm EST, on Gradescope

Problem 1: Equivalence of decision and search for some problems in NP

1. Suppose you had a blackbox that given a 3SAT instance would tell you whether it is
satisfiable or not. How can you make polynomially many calls to this blackbox to find
a satisfying assignment to any satisfiable instance of 3SAT?

2. Suppose you had a blackbox that given a graph G and an integer k would tell you
whether G has a stable set of size larger or equal to k. How can you make polynomially
many calls to this blackbox to find a maximum stable set of a given graph?

Problem 2: Complexity of rank-constrained SDPs
Consider a family of decision problems indexed by a positive integer k:

RANK-k-SDP
Input: Symmetric n× n matrices A1, . . . , Am with entries in Q, scalars b1, . . . , bm ∈ Q.
Question: Is there a real symmetric matrix X that satisfies the constraints

Tr(AiX) = bi, i = 1, . . . ,m, X ⪰ 0, rank(X) = k?

Show that RANK-k-SDP is NP-hard for any integer k ≥ 1.

(Hint: First show NP-hardness for k = 1, then see how you can modify your construction so
that it would work for any other k.)

Problem 3: Complexity of testing monotonicity
A polynomial p(x) : = p(x1, . . . , xn) is nondecreasing with respect to a variable xi if

∂p

∂xi

(x) ≥ 0, ∀x ∈ Rn.

Show that the problem of deciding whether a degree-d polynomial1 with rational coefficients
is nondecreasing with respect to a particular variable (e.g., x1) is

1Here, the degree of a polynomial is equal to the highest degree of its monomials with a nonzero coefficient.

1



(i) in P if d is less than 5,2

(ii) NP-hard if d is greater than or equal to 5.

Problem 4: Monotone and convex regression
In the previous problem, we saw that deciding whether a polynomial is monotone is NP-
hard. The same claim holds for checking convexity of polynomials (of degree 2d ≥ 4).
This suggests that optimizing over monotone or convex polynomials will naturally also be
NP-hard. Nonetheless, in this problem, we explore some ways to perform this task.

1. In the file regression_data.mat, you are given 20 points (xi, fi) in R2 where (xi)i=1,...,20

are the entries of the vector xvec and (fi)i=1,...,20 are the entries of the vector fvec.

Figure 1: Figure generated by scatter(xvec,fvec)

The goal is to fit a polynomial of degree 7

p(x) = c0 + c1x+ . . . c7x
7 (1)

to the data to minimize least square error:

min
c0,c1,...,c7

20∑
i=1

(p(xi)− fi)
2. (2)

The data comes from noisy measurements of an unknown function that is a priori
known to be nondecreasing (e.g., the number of calories you intake as a function of
the number of Big Macs you eat).

2You can take as given that positive semidefiniteness of an r × r matrix can be checked in time O(r3).

2



(a) If the underlying function is truly monotone and the noise is not too large, one may
hope that least squares would automatically respect the monotonicity constraint.
Solve (2) to see if this is the case. Plot the optimal polynomial you get and report
the optimal value.

(b) Resolve (2) subject to the constraint that the polynomial (1) is nondecreasing.
Plot the optimal polynomial you get and report the optimal value.

2. In the file regression_data.mat, you are also given 30 points (x1
i , x

2
i , gi) in R3 where

(x1
i )i=1,...,30 are the entries of the vector x1vec, (x2

i )i=1,...,30 are the entries of x2vec and
(gi)i=1,...,30 are the entries of the vector gvec. You can see these points below.

Figure 2: Figure generated by scatter3(x1vec,x2vec,gvec)

The goal in this case is to fit a polynomial of degree 4

p := p(x1, x2) = c0 + c1x1 + c2x2 + c3x
2
1 + c4x1x2 + c5x

2
2 + . . . c15x

4
2

to the data to minimize least square error:

min
c0,c1,...,c15

30∑
i=1

(p(xi)− gi)
2. (3)

This time, the unknown underlying function is known to be convex; we want this
property to be preserved in our regression.

(a) Solve (3) and plot the resulting polynomial together with the data points. Report
the optimal value of the problem (denoted by η∗). Is the optimal polynomial
convex?

3



(b) Find a convex polynomial p of degree no more than 4 such that its least squares
error

η :=
30∑
i=1

(p(xi)− gi)
2

satisfies η < 1.75η∗.

Coding instructions

• YALMIP is the recommended SOS parser in MATLAB. Take advantage of
the built-in functions of YALMIP such as hessian, jacobian, etc.

• In Python, you could install sympy and the SumOfSquares package. Use
the functions SOSproblem(), set objective(), add sos constraint()
in the SumOfSquares package to create an SOS problem, and use the diff
function in sympy to compute the gradient and the Hessian.

4


