
1

Introduction to
Parallel Computing

Tali Moreshet
Department of Engineering

Swarthmore College

Computer Architecture
Summer School
08/20/08 - 08/21/08 CompArch 08/20/08

Uniprocessor

 Single processor on a chip

 Runs a single program at a time

 Moore’s Law: The number of transistors
on a chip doubles every ~2 years
• Transistor size shrinks
• Clock speeds increase
• Can fit more logic on a chip

 Program performance increases
with new processor generations

Intel Pentium4

CompArch 08/20/08

Multiprocessor

 But…
 complexity and power consumption also increase

 More processors
 on a chip
• Multi-core
• Chip Multiprocessor (CMP)

 Clock speeds level off

 To increase program performance need to rewrite it!
• Parallel programming

Intel Core Duo

CompArch 08/20/08

Processor and Memory

 Why is parallel programming
more challenging?

 First, let’s take a simplified view
of microprocessor architecture

 Starting with the uniprocessor

Memory

P

CompArch 08/20/08

Processor and Memory

 Memory is located off-chip,
far from the processor

 To read from memory:
• Send address on bus
• Wait for memory
• Receive data from memory

 To write to memory:
• Send address and data on bus
• Possibly wait for an

acknowledgement
from memory Memory

P

CompArch 08/20/08

Processor and Memory

 Memory is large and slow

 How can we get data to the
processor faster?

Memory

P

2

CompArch 08/20/08

Cache

 A cache is memory that is:
• Smaller
• Faster
• Closer to processor
• Often on-chip

 To read from memory:
• Send address on bus
• Cache is searched first
• Cache hit

 shorter latency
• Cache miss

 send address to memory
 receive data from memory

 store in cache for later use

data

Memory

P

Cache

CompArch 08/20/08

Multiprocessor Memory Architecture

 Processors connected to shared memory via a shared bus

 All processors see all memory activity

 Memory is large and slow

 How can we get data to the processor faster?

P1

Shared Memory

P2 P3 P4

CompArch 08/20/08

Multiprocessor Memory Architecture

 Each processor sees only its own local cache,
and shared memory

 Local cache accesses are faster

 What are the new issues here?

P1

Shared Memory

$

P2 P3 P4

$$ $

CompArch 08/20/08

P1

Shared Memory

$

P2 P3 P4

$$ $

Memory Consistency

 P1 broadcasts a read request for address A

A

CompArch 08/20/08

Memory Consistency

 Memory responds

D = 0

P1

Shared Memory

$

P2 P3 P4

$$ $

CompArch 08/20/08

P1

Shared Memory

$

P2 P3 P4

$$ $D = 0

Memory Consistency

 P2 broadcasts a read request for address A

A

3

CompArch 08/20/08

P1

Shared Memory

$

P2 P3 P4

$$ $

Memory Consistency

 Memory responds

D = 0

D = 0

CompArch 08/20/08

P1

Shared Memory

$

P2 P3 P4

$$ $

Memory Consistency

 Two different values for A exist in the system

D = 1 D = 0

CompArch 08/20/08

P1

Shared Memory

$

P2 P3 P4

$$ $D = 1 D = 0

Memory Consistency

 P3 broadcasts a read request for address A

 Which data should it read?

 Cache coherence

A

CompArch 08/20/08

Parallel Programming

 Serial execution of a single thread
 Multiple threads running concurrently

Challenges

 Splitting application to utilize cores
• Ideally: number of threads == number of cores

 Balancing the work among cores

 Coordination among various code parts
• All accessing a single shared memory
• Unpredictable delays such as cache misses

CompArch 08/20/08

Prime Number Example

 Task:
Print primes from 1 to 1010

 Hardware:
Ten-processor CMP
One thread per processor

 Goal:
Close to maximum possible speedup
Ten fold speedup over uniprocessor (?)

Example adopted from
“Art of Multiprocessor Programming”

Herlihy-Shavit CompArch 08/20/08

Load Balancing

 Split the work evenly to 10 threads
 Each thread tests range of 109 integers

But
 Higher ranges have fewer primes
 Larger numbers are harder to test
 Workloads are uneven, hard to predict
 Need dynamic load balancing

…

…109 10102·1091

P0 P1 P9

4

CompArch 08/20/08

Shared Counter

 Each thread takes a number

 Tests if prime

 Takes next available number

 Until no more numbers left

17

18

19

CompArch 08/20/08

Procedure for thread i

int counter = new Counter(1);

void primePrint {
 long j = 0;
 while (j < 1010) {
 j = counter.getAndIncrement();
 if (isPrime(j))
 print(j);
 }
}

CompArch 08/20/08

Procedure for thread i

int counter = new Counter(1);

void primePrint {
 long j = 0;
 while (j < 1010) {
 j = counter.getAndIncrement();
 if (isPrime(j))
 print(j);
 }
}

Shared counter
object

CompArch 08/20/08

P1

Shared Memory

$

P2 P3 P4

$$ $

Where Are Variables Stored?

17

Shared variable

Local variables

CompArch 08/20/08

Procedure for thread i

int counter = new Counter(1);

void primePrint {
 long j = 0;
 while (j < 1010) {
 j = counter.getAndIncrement();
 if (isPrime(j))
 print(j);
 }
}

Stop when every
value taken

CompArch 08/20/08

Procedure for thread i

int counter = new Counter(1);

void primePrint {
 long j = 0;
 while (j < 1010) {
 j = counter.getAndIncrement();
 if (isPrime(j))
 print(j);
 }
} Increment counter

& return new value

5

CompArch 08/20/08

Counter Implementation

public class Counter {
 private long value;

 public long getAndIncrement() {
 return value++;
 }
}

CompArch 08/20/08

public class Counter {
 private long value;

 public long getAndIncrement() {
 return value++;
 }
}

Counter Implementation

temp = value;
value = value + 1;
return temp;

write
2

read
1

Thread 2:

write
3

read
2

write
2

read
1

Thread 1:

Counter: 1 2 23

CompArch 08/20/08

public class Counter {
 private long value;

 public long getAndIncrement() {
 temp = value;
 value = value + 1;
 return temp;
 }
}

Counter Implementation

Make these steps
atomic (indivisible)

Hardware solution:
ReadModifyWrite() instruction
Mutual exclusion

CompArch 08/20/08

public class Counter {
 private long value;

 public long getAndIncrement() {
 synchronized {
 temp = value;
 value = value + 1;
 }
 return temp;
 }
}

Counter Implementation

Software solution:
Java synchronized block
Mutual exclusion

CompArch 08/20/08

Mutual Exclusion

 Enable atomic execution of a code section

 Support available in hardware or software

write
2

read
1

Thread 2:

write
3

read
2

write
2

read
1

Thread 1:

Counter: 1 2 23

CompArch 08/20/08

public class Counter {
 private long value;

 public long getAndIncrement() {
 temp = value;
 value = value + 1;
 return temp;
 }
}

Counter Implementation

Make these steps
atomic (indivisible)

General solution:
use locks

6

CompArch 08/20/08

Locks

 Locks are means of providing mutual exclusion

 Prevent others from accessing atomic section

 Lock == 1  lock is taken
Lock == 0  lock is free

 To acquire lock:
Compare-and-Swap
Atomic: Read lock from shared memory

 Compare to value 0
Write 1 if compare returned 0

 To release lock:
Write 0 to lock

CompArch 08/20/08

Locks (Mutual Exclusion)

public interface Lock {

 public void lock();

 public void unlock();
}

acquire lock

release lock

CompArch 08/20/08

Using Locks

public class Counter {
 private long value;
 private Lock lock;
 public long getAndIncrement() {
 lock.lock();
 try {
 int temp = value;
 value = value + 1;
 } finally {
 lock.unlock();
 }
 return temp;
 }}

CompArch 08/20/08

Using Locks

public class Counter {
 private long value;
 private Lock lock;
 public long getAndIncrement() {
 lock.lock();
 try {
 int temp = value;
 value = value + 1;
 } finally {
 lock.unlock();
 }
 return temp;
 }}

acquire lock

CompArch 08/20/08

Using Locks

public class Counter {
 private long value;
 private Lock lock;
 public long getAndIncrement() {
 lock.lock();
 try {
 int temp = value;
 value = value + 1;
 } finally {
 lock.unlock();
 }
 return temp;
 }}

release lock
(no matter what)

CompArch 08/20/08

Using Locks

public class Counter {
 private long value;
 private Lock lock;
 public long getAndIncrement() {
 lock.lock();
 try {
 int temp = value;
 value = value + 1;
 } finally {
 lock.unlock();
 }
 return temp;
 }}

Critical
Section

7

CompArch 08/20/08

Parallel Programming for Performance

 Load balancing

 Reduce idle time when threads wait

 Maximize parallel portion of code

 Minimize sequential parts
• Small critical sections
• Fine-grained synchronization

CompArch 08/20/08

Disadvantages of Locks

 Coarse-grain
• High contention (on the lock)
• Low throughput

 Fine-grain
• Difficult to program and debug
• Deadlock, interrupt

 Spin-locks - repetitive accesses until free
• Many memory accesses
• Useless work

 Alternatives: blocking, queue locks

CompArch 08/20/08

Transactional Memory

 Lock-free synchronization

 Transaction: Atomic section lock()  unlock()

 Speculative execution – optimistic
• No conflicts  commit
• Conflicts detected  roll back, reissue

 Hardware requirements
• Additional memory or dedicated cache
• Changes to cache coherence protocol

 May also be implemented in software

CompArch 08/20/08

Parallel Programming

 Parallelize as much of the code as possible

 Minimize sequential parts

 Be careful with mutual exclusion
• Requires waiting
• Different approaches
• Each has its advantages

CompArch 08/20/08

Questions?

 Java code snippets adopted from
“Art of Multiprocessor Programming”, Herlihy-Shavit

