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Uniprocessor

 Single processor on a chip

 Runs a single program at a time

 Moore’s Law:  The number of transistors
on a chip doubles every ~2 years
• Transistor size shrinks
• Clock speeds increase
• Can fit more logic on a chip

 Program performance increases
with new processor generations

Intel Pentium4
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Multiprocessor

 But…
  complexity and power consumption also increase

          More processors
    on a chip
• Multi-core
• Chip Multiprocessor (CMP)

 Clock speeds level off

 To increase program performance need to rewrite it!
• Parallel programming

Intel Core Duo
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Processor and Memory

 Why is parallel programming
more challenging?

 First, let’s take a simplified view
of microprocessor architecture

 Starting with the uniprocessor

Memory

P
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Processor and Memory

 Memory is located off-chip,
far from the processor

 To read from memory:
• Send address on bus
• Wait for memory
• Receive data from memory

 To write to memory:
• Send address and data on bus
• Possibly wait for an

acknowledgement
from memory Memory

P
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Processor and Memory

 Memory is large and slow

 How can we get data to the
processor faster?

Memory

P
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Cache

 A cache is memory that is:
• Smaller
• Faster
• Closer to processor
• Often on-chip

 To read from memory:
• Send address on bus
• Cache is searched first
• Cache hit

 shorter latency
• Cache miss

 send address to memory
   receive data from memory

    store in cache for later use

data

Memory

P

Cache
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Multiprocessor Memory Architecture

 Processors connected to shared memory via a shared bus

 All processors see all memory activity

 Memory is large and slow

 How can we get data to the processor faster?

P1

Shared Memory

P2 P3 P4
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Multiprocessor Memory Architecture

 Each processor sees only its own local cache,
and shared memory

 Local cache accesses are faster

 What are the new issues here?

P1

Shared Memory

$

P2 P3 P4

$$ $
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P1

Shared Memory

$

P2 P3 P4

$$ $

Memory Consistency

 P1 broadcasts a read request for address A

A
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Memory Consistency

 Memory responds

D = 0

P1

Shared Memory

$

P2 P3 P4

$$ $
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P1

Shared Memory

$

P2 P3 P4

$$ $D = 0

Memory Consistency

 P2 broadcasts a read request for address A

A
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P1

Shared Memory

$

P2 P3 P4

$$ $

Memory Consistency

 Memory responds

D = 0

D = 0
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P1

Shared Memory

$

P2 P3 P4

$$ $

Memory Consistency

 Two different values for A exist in the system

D = 1 D = 0
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P1

Shared Memory

$

P2 P3 P4

$$ $D = 1 D = 0

Memory Consistency

 P3 broadcasts a read request for address A

 Which data should it read?

 Cache coherence

A
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Parallel Programming

 Serial execution of a single thread
 Multiple threads running concurrently

Challenges

 Splitting application to utilize cores
• Ideally:  number of threads == number of cores

 Balancing the work among cores

 Coordination among various code parts
• All accessing a single shared memory
• Unpredictable delays such as cache misses

CompArch 08/20/08

Prime Number Example

 Task:
Print primes from 1 to 1010

 Hardware:
Ten-processor CMP
One thread per processor

 Goal:
Close to maximum possible speedup
Ten fold speedup over uniprocessor (?)

Example adopted from
“Art of Multiprocessor Programming”

Herlihy-Shavit CompArch 08/20/08

Load Balancing

 Split the work evenly to 10 threads
 Each thread tests range of 109 integers

But
 Higher ranges have fewer primes
 Larger numbers are harder to test
 Workloads are uneven, hard to predict
 Need dynamic load balancing

…

…109 10102·1091

P0 P1 P9
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Shared Counter

 Each thread takes a number

 Tests if prime

 Takes next available number

 Until no more numbers left

17

18

19
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Procedure for thread i

int counter = new Counter(1);

void primePrint {
  long j = 0;
  while (j < 1010) {
    j = counter.getAndIncrement();
    if (isPrime(j))
      print(j);
  }
}
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Procedure for thread i

int counter = new Counter(1);

void primePrint {
  long j = 0;
  while (j < 1010) {
    j = counter.getAndIncrement();
    if (isPrime(j))
      print(j);
  }
}

Shared counter
object
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P1

Shared Memory

$

P2 P3 P4

$$ $

Where Are Variables Stored?

17

Shared variable

Local variables
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Procedure for thread i

int counter = new Counter(1);

void primePrint {
  long j = 0;
  while (j < 1010) {
    j = counter.getAndIncrement();
    if (isPrime(j))
      print(j);
  }
}

Stop when every
value taken
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Procedure for thread i

int counter = new Counter(1);

void primePrint {
  long j = 0;
  while (j < 1010) {
    j = counter.getAndIncrement();
    if (isPrime(j))
      print(j);
  }
} Increment counter

& return new value
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Counter Implementation

public class Counter {
  private long value;

  public long getAndIncrement() {
    return value++;
  }
}
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public class Counter {
  private long value;

  public long getAndIncrement() {
    return value++;
  }
}

Counter Implementation

temp = value;
value = value + 1;
return temp;

write
2

read
1

Thread 2:

write
3

read
2

write
2

read
1

Thread 1:

Counter: 1 2 23
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public class Counter {
  private long value;

  public long getAndIncrement() {
    temp = value;
    value = value + 1;
    return temp;
  }
}

Counter Implementation

Make these steps 
atomic (indivisible)

Hardware solution:
ReadModifyWrite() instruction
Mutual exclusion
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public class Counter {
  private long value;

  public long getAndIncrement() {
    synchronized {
      temp = value;
      value = value + 1;
    }
    return temp;
  }
}

Counter Implementation

Software solution:
Java synchronized block
Mutual exclusion
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Mutual Exclusion

 Enable atomic execution of a code section

 Support available in hardware or software

write
2

read
1

Thread 2:

write
3

read
2

write
2

read
1

Thread 1:

Counter: 1 2 23
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public class Counter {
  private long value;

  public long getAndIncrement() {
    temp = value;
    value = value + 1;
    return temp;
  }
}

Counter Implementation

Make these steps 
atomic (indivisible)

General solution:
use locks
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Locks

 Locks are means of providing mutual exclusion

 Prevent others from accessing atomic section

 Lock == 1    lock is taken
Lock == 0    lock is free

 To acquire lock:
Compare-and-Swap
Atomic: Read lock from shared memory

  Compare to value 0
Write 1 if compare returned 0

 To release lock:
Write 0 to lock
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Locks (Mutual Exclusion)

public interface Lock {

 public void lock();

 public void unlock();
}

acquire lock

release lock
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Using Locks

public class Counter {
  private long value;
  private Lock lock;
  public long getAndIncrement() {
   lock.lock();
   try {
    int temp = value;
    value = value + 1;
   } finally {
     lock.unlock();
   }
   return temp;
  }}
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Using Locks

public class Counter {
  private long value;
  private Lock lock;
  public long getAndIncrement() {
   lock.lock();
   try {
    int temp = value;
    value = value + 1;
   } finally {
     lock.unlock();
   }
   return temp;
  }}

acquire lock
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Using Locks

public class Counter {
  private long value;
  private Lock lock;
  public long getAndIncrement() {
   lock.lock();
   try {
    int temp = value;
    value = value + 1;
   } finally {
     lock.unlock();
   }
   return temp;
  }}

release lock
(no matter what)
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Using Locks

public class Counter {
  private long value;
  private Lock lock;
  public long getAndIncrement() {
   lock.lock();
   try {
    int temp = value;
    value = value + 1;
   } finally {
     lock.unlock();
   }
   return temp;
  }}

Critical
Section
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Parallel Programming for Performance

 Load balancing

 Reduce idle time when threads wait

 Maximize parallel portion of code

 Minimize sequential parts
• Small critical sections
• Fine-grained synchronization
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Disadvantages of Locks

 Coarse-grain
• High contention (on the lock)
• Low throughput

 Fine-grain
• Difficult to program and debug
• Deadlock, interrupt

 Spin-locks - repetitive accesses until free
• Many memory accesses
• Useless work

 Alternatives: blocking, queue locks
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Transactional Memory

 Lock-free synchronization

 Transaction: Atomic section     lock()  unlock()

 Speculative execution – optimistic
• No conflicts  commit
• Conflicts detected  roll back, reissue

 Hardware requirements
• Additional memory or dedicated cache
• Changes to cache coherence protocol

 May also be implemented in software
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Parallel Programming

 Parallelize as much of the code as possible

 Minimize sequential parts

 Be careful with mutual exclusion
• Requires waiting
• Different approaches
• Each has its advantages
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Questions?

 Java code snippets adopted from
“Art of Multiprocessor Programming”, Herlihy-Shavit


