
1

Introduction to
Parallel Computing

Tali Moreshet
Department of Engineering

Swarthmore College

Computer Architecture
Summer School
08/20/08 - 08/21/08 CompArch 08/20/08

Uniprocessor

 Single processor on a chip

 Runs a single program at a time

 Moore’s Law: The number of transistors
on a chip doubles every ~2 years
• Transistor size shrinks
• Clock speeds increase
• Can fit more logic on a chip

 Program performance increases
with new processor generations

Intel Pentium4

CompArch 08/20/08

Multiprocessor

 But…
 complexity and power consumption also increase

 More processors
 on a chip
• Multi-core
• Chip Multiprocessor (CMP)

 Clock speeds level off

 To increase program performance need to rewrite it!
• Parallel programming

Intel Core Duo

CompArch 08/20/08

Processor and Memory

 Why is parallel programming
more challenging?

 First, let’s take a simplified view
of microprocessor architecture

 Starting with the uniprocessor

Memory

P

CompArch 08/20/08

Processor and Memory

 Memory is located off-chip,
far from the processor

 To read from memory:
• Send address on bus
• Wait for memory
• Receive data from memory

 To write to memory:
• Send address and data on bus
• Possibly wait for an

acknowledgement
from memory Memory

P

CompArch 08/20/08

Processor and Memory

 Memory is large and slow

 How can we get data to the
processor faster?

Memory

P

2

CompArch 08/20/08

Cache

 A cache is memory that is:
• Smaller
• Faster
• Closer to processor
• Often on-chip

 To read from memory:
• Send address on bus
• Cache is searched first
• Cache hit

 shorter latency
• Cache miss

 send address to memory
 receive data from memory

 store in cache for later use

data

Memory

P

Cache

CompArch 08/20/08

Multiprocessor Memory Architecture

 Processors connected to shared memory via a shared bus

 All processors see all memory activity

 Memory is large and slow

 How can we get data to the processor faster?

P1

Shared Memory

P2 P3 P4

CompArch 08/20/08

Multiprocessor Memory Architecture

 Each processor sees only its own local cache,
and shared memory

 Local cache accesses are faster

 What are the new issues here?

P1

Shared Memory

$

P2 P3 P4

$$ $

CompArch 08/20/08

P1

Shared Memory

$

P2 P3 P4

$$ $

Memory Consistency

 P1 broadcasts a read request for address A

A

CompArch 08/20/08

Memory Consistency

 Memory responds

D = 0

P1

Shared Memory

$

P2 P3 P4

$$ $

CompArch 08/20/08

P1

Shared Memory

$

P2 P3 P4

$$ $D = 0

Memory Consistency

 P2 broadcasts a read request for address A

A

3

CompArch 08/20/08

P1

Shared Memory

$

P2 P3 P4

$$ $

Memory Consistency

 Memory responds

D = 0

D = 0

CompArch 08/20/08

P1

Shared Memory

$

P2 P3 P4

$$ $

Memory Consistency

 Two different values for A exist in the system

D = 1 D = 0

CompArch 08/20/08

P1

Shared Memory

$

P2 P3 P4

$$ $D = 1 D = 0

Memory Consistency

 P3 broadcasts a read request for address A

 Which data should it read?

 Cache coherence

A

CompArch 08/20/08

Parallel Programming

 Serial execution of a single thread
 Multiple threads running concurrently

Challenges

 Splitting application to utilize cores
• Ideally: number of threads == number of cores

 Balancing the work among cores

 Coordination among various code parts
• All accessing a single shared memory
• Unpredictable delays such as cache misses

CompArch 08/20/08

Prime Number Example

 Task:
Print primes from 1 to 1010

 Hardware:
Ten-processor CMP
One thread per processor

 Goal:
Close to maximum possible speedup
Ten fold speedup over uniprocessor (?)

Example adopted from
“Art of Multiprocessor Programming”

Herlihy-Shavit CompArch 08/20/08

Load Balancing

 Split the work evenly to 10 threads
 Each thread tests range of 109 integers

But
 Higher ranges have fewer primes
 Larger numbers are harder to test
 Workloads are uneven, hard to predict
 Need dynamic load balancing

…

…109 10102·1091

P0 P1 P9

4

CompArch 08/20/08

Shared Counter

 Each thread takes a number

 Tests if prime

 Takes next available number

 Until no more numbers left

17

18

19

CompArch 08/20/08

Procedure for thread i

int counter = new Counter(1);

void primePrint {
 long j = 0;
 while (j < 1010) {
 j = counter.getAndIncrement();
 if (isPrime(j))
 print(j);
 }
}

CompArch 08/20/08

Procedure for thread i

int counter = new Counter(1);

void primePrint {
 long j = 0;
 while (j < 1010) {
 j = counter.getAndIncrement();
 if (isPrime(j))
 print(j);
 }
}

Shared counter
object

CompArch 08/20/08

P1

Shared Memory

$

P2 P3 P4

$$ $

Where Are Variables Stored?

17

Shared variable

Local variables

CompArch 08/20/08

Procedure for thread i

int counter = new Counter(1);

void primePrint {
 long j = 0;
 while (j < 1010) {
 j = counter.getAndIncrement();
 if (isPrime(j))
 print(j);
 }
}

Stop when every
value taken

CompArch 08/20/08

Procedure for thread i

int counter = new Counter(1);

void primePrint {
 long j = 0;
 while (j < 1010) {
 j = counter.getAndIncrement();
 if (isPrime(j))
 print(j);
 }
} Increment counter

& return new value

5

CompArch 08/20/08

Counter Implementation

public class Counter {
 private long value;

 public long getAndIncrement() {
 return value++;
 }
}

CompArch 08/20/08

public class Counter {
 private long value;

 public long getAndIncrement() {
 return value++;
 }
}

Counter Implementation

temp = value;
value = value + 1;
return temp;

write
2

read
1

Thread 2:

write
3

read
2

write
2

read
1

Thread 1:

Counter: 1 2 23

CompArch 08/20/08

public class Counter {
 private long value;

 public long getAndIncrement() {
 temp = value;
 value = value + 1;
 return temp;
 }
}

Counter Implementation

Make these steps
atomic (indivisible)

Hardware solution:
ReadModifyWrite() instruction
Mutual exclusion

CompArch 08/20/08

public class Counter {
 private long value;

 public long getAndIncrement() {
 synchronized {
 temp = value;
 value = value + 1;
 }
 return temp;
 }
}

Counter Implementation

Software solution:
Java synchronized block
Mutual exclusion

CompArch 08/20/08

Mutual Exclusion

 Enable atomic execution of a code section

 Support available in hardware or software

write
2

read
1

Thread 2:

write
3

read
2

write
2

read
1

Thread 1:

Counter: 1 2 23

CompArch 08/20/08

public class Counter {
 private long value;

 public long getAndIncrement() {
 temp = value;
 value = value + 1;
 return temp;
 }
}

Counter Implementation

Make these steps
atomic (indivisible)

General solution:
use locks

6

CompArch 08/20/08

Locks

 Locks are means of providing mutual exclusion

 Prevent others from accessing atomic section

 Lock == 1 lock is taken
Lock == 0 lock is free

 To acquire lock:
Compare-and-Swap
Atomic: Read lock from shared memory

 Compare to value 0
Write 1 if compare returned 0

 To release lock:
Write 0 to lock

CompArch 08/20/08

Locks (Mutual Exclusion)

public interface Lock {

 public void lock();

 public void unlock();
}

acquire lock

release lock

CompArch 08/20/08

Using Locks

public class Counter {
 private long value;
 private Lock lock;
 public long getAndIncrement() {
 lock.lock();
 try {
 int temp = value;
 value = value + 1;
 } finally {
 lock.unlock();
 }
 return temp;
 }}

CompArch 08/20/08

Using Locks

public class Counter {
 private long value;
 private Lock lock;
 public long getAndIncrement() {
 lock.lock();
 try {
 int temp = value;
 value = value + 1;
 } finally {
 lock.unlock();
 }
 return temp;
 }}

acquire lock

CompArch 08/20/08

Using Locks

public class Counter {
 private long value;
 private Lock lock;
 public long getAndIncrement() {
 lock.lock();
 try {
 int temp = value;
 value = value + 1;
 } finally {
 lock.unlock();
 }
 return temp;
 }}

release lock
(no matter what)

CompArch 08/20/08

Using Locks

public class Counter {
 private long value;
 private Lock lock;
 public long getAndIncrement() {
 lock.lock();
 try {
 int temp = value;
 value = value + 1;
 } finally {
 lock.unlock();
 }
 return temp;
 }}

Critical
Section

7

CompArch 08/20/08

Parallel Programming for Performance

 Load balancing

 Reduce idle time when threads wait

 Maximize parallel portion of code

 Minimize sequential parts
• Small critical sections
• Fine-grained synchronization

CompArch 08/20/08

Disadvantages of Locks

 Coarse-grain
• High contention (on the lock)
• Low throughput

 Fine-grain
• Difficult to program and debug
• Deadlock, interrupt

 Spin-locks - repetitive accesses until free
• Many memory accesses
• Useless work

 Alternatives: blocking, queue locks

CompArch 08/20/08

Transactional Memory

 Lock-free synchronization

 Transaction: Atomic section lock() unlock()

 Speculative execution – optimistic
• No conflicts commit
• Conflicts detected roll back, reissue

 Hardware requirements
• Additional memory or dedicated cache
• Changes to cache coherence protocol

 May also be implemented in software

CompArch 08/20/08

Parallel Programming

 Parallelize as much of the code as possible

 Minimize sequential parts

 Be careful with mutual exclusion
• Requires waiting
• Different approaches
• Each has its advantages

CompArch 08/20/08

Questions?

 Java code snippets adopted from
“Art of Multiprocessor Programming”, Herlihy-Shavit

