

Power in Microprocessor Designs

Mandy Pant

MMDC, Intel

Email: mondira.pant@intel.com

First.... Who Am I ?

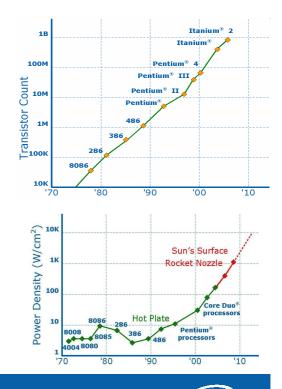
Until a few years ago ..

Emphasis had been **solely** on improving performance

21Aug2008 Copyright © Intel Corporation, 2008 All rights reserved. Third-party marks and brands are the property of their respective owners. All products, dates, and figures are subject to change without notice.

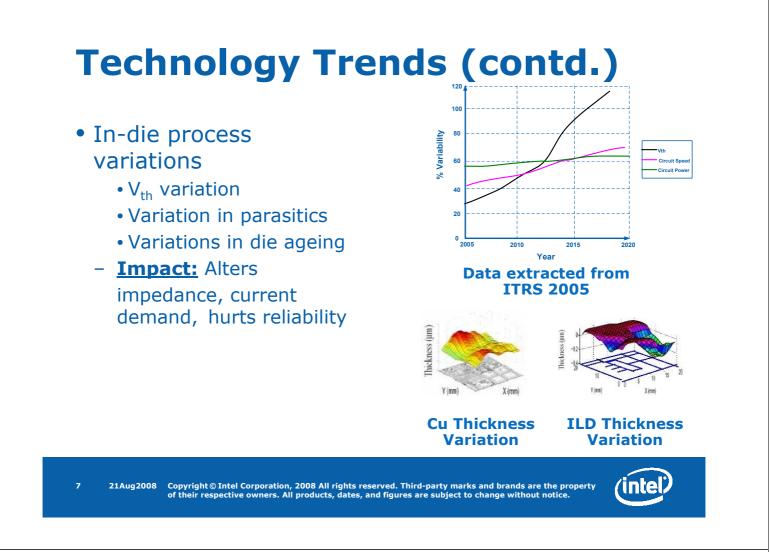
Times have changed

No longer sole emphasis on performance


Power & reliability concerns have become huge !!

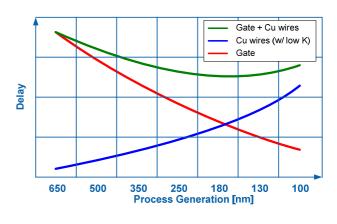
Technology Trends: Moore's Law

- More and faster transistors with higher power demands
 - Gate delay ↓30% every process generation (2 years)
- Area of a transistor roughly scales by 50% per generation
 - Transistor density doubling
 - Power density increasing


5 21Aug2008 Copyright © Intel Corporation, 2008 All rights reserved. Third-party marks and brands are the property of their respective owners. All products, dates, and figures are subject to change without notice.

Technology Trends

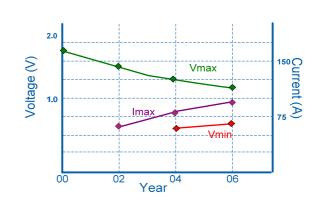
Traditional cooling solutions reaching physical limits


http://www.phys.ncku.edu.tw/~htsu/humor/fry_egg.html

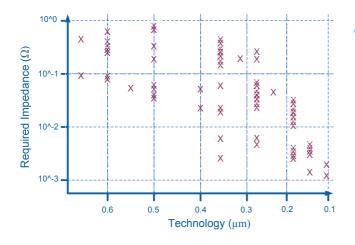
Technology Trends (contd.)

- Delay Trends
 - ➡ Gate delay, Wire delay
 - Cross-chip communication

Performance demands continue



Wire & gate delay trends


Technology Trends (contd.)

- Intel's "Right Hand Turn"
 - Power is \$\$
 - "Power Wall" driving reduction in voltage
 - Dynamic power = $\alpha C V^2$ F
- V_{MIN} relatively constant
 - – Operating range
 - Noise margins

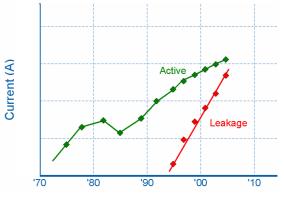
9 21Aug2008 Copyright © Intel Corporation, 2008 All rights reserved. Third-party marks and brands are the property of their respective owners. All products, dates, and figures are subject to change without notice.

Technology Trends (contd.)

Impedance Rqmts. For High Performance MicroProcessors

ISTR RoadMap July 31st 2007

- Impedance scaling:
 - Drastic drop in supply impedance
 - Even at constant power
 - Vdd 🖊, Imax 🕇
 - → |Zrequired| ↓ ↓
 - Today's chips: |Zrequired|
 ≈1 mΩ
 - Supply voltage becoming noisy as result



(intel.

Technology Trends (contd.)

Leakage power

- Increasing
- Constant demand on power delivery system
 - Reliability impact

Leakage & Active Current Trends

Challenge: Efficient power delivery while:

- Minimizing power consumption
- Optimizing heat dissipation

11 21Aug2008 Copyright © Intel Corporation, 2008 All rights reserved. Third-party marks and brands are the property of their respective owners. All products, dates, and figures are subject to change without notice.

(intel)

Some Other Trends

Economy

- Electronic device presence multiplying
- Energy consumption increasing
- Energy costs rising
 - We all have an electricity bill to pay at the end of the month

Sociology & environment

• Global warming awareness

What exactly is Power & Energy ?

Power

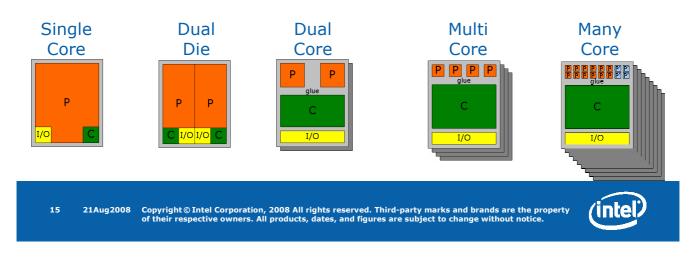
- Rate at which work is done, expressed as amount of work per unit of time in Watts
- In a microprocessor:
 - Power consumed = dynamic power + leakage power
 - P = (Pswitch + Psc + Pcont + Pglitch) + Pleak
 - $P = (\alpha C V^2 F + Psc + Pcont + Pglitch) + VI_{leak}$ α activity factor V power supply voltage F clock frequency
 - C switching capacitance
 - Vt threshold voltage
- $I_{loak} \sim exp(-qVt/kT)$ leakage current

Energy

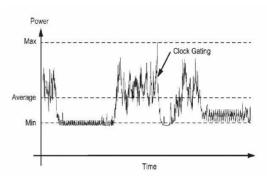
- Total amount of work done expresses in Joules
 - Power * Time = Energy

Which one do we aim at lowering: Energy or Power or BOTH?

21Aug2008 Copyright © Intel Corporation, 2008 All rights reserved. Third-party marks and brands are the property of their respective owners. All products, dates, and figures are subject to change without notice. 13


Current Design Solutions

- Multiple voltage domains on-die
 - Trick used to reduce power while maintaining performance
 - Cache voltage lower than core/uncore voltage
 - Cache mainly needs to hold state
 - Speed critical for execution units, overall communication etc \rightarrow leads to higher voltage requirements here
 - Impact
 - Overall grid metal available per domain reduced
 - May need to compromise grid requirements depending upon distribution of voltage domains


Current Design Solutions

- Multi-core trend
 - Attractive for throughput based solutions
 - Enables reduction in power consumption while maintaining throughput
 - Dynamic power = CV^2F
 - Power = 1Core @ V,F ~ 2 Cores @ 0.8V,0.8F

Current Design Solutions

- Active power management techniques
 - V/f scaling
 - Multiple operating modes for various benchmarks
 - Clock gating & power down mechanisms
 - ➡ Higher I_{STEP} (I_{MAX} I_{MIN})
 - Power gates

SUN Microsystems CPU Sample Current Profile

Source: Harris, Addison-Wesley '05

Is it sufficient ?

21Aug2008 Copyright © Intel Corporation, 2008 All rights reserved. Third-party marks and brands are the property of their respective owners. All products, dates, and figures are subject to change without notice.

17

2015 Likely Scenario

5 Billion Connected People Always On In Pursuit of Killer "Experiences"

Network Capacity? 100 Tbits/sec Today. 100,000 Tbits/sec Needed. That is **1000x** Increase!

inte

That's a lot of power!

19 21Aug2008 Copyright © Intel Corporation, 2008 All rights reserved. Third-party marks and brands are the property of their respective owners. All products, dates, and figures are subject to change without notice.

Summary

- Technology trends in nano-era have elevated our power and reliability challenges
- Call for action: We need to be able to develop easy and revolutionary techniques to counter this in the increasing world of complicated microprocessor design
 - Plenty exist....but not sufficient
- Plenty of opportunities for research

Talk to/email me for further input/questions **Email: mondira.pant@intel.com**

