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ANNIVERSARY ESSAY
The transformation of behaviour field studies
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As areas of science mature, they pass through three, broadly overlapping stages of development,
characterized respectively by description, explanation and synthesis. Field research on animal behaviour
is making the transition from an area with a preponderance of purely descriptive studies to one that also
includes the development and testing of verifiable hypotheses about the structure, causes and conse-
quences of behaviour. We survey several reasons for this transformation of behaviour field studies and
some of the major trends that characterize it, including: (1) patterns discerned in our cumulative
knowledge of natural history; (2) increased support for behaviour field studies; (3) interfaces with related
areas of science; (4) the development of observational sampling methods and other aspects of data
sampling and analysis; (5) the development of models of behaviour’s adaptive functions and life-history
consequences; (6) long-term field sites that make possible complete life histories, increased attention to
individual differences and intergenerational studies of behaviour; and (7) the development of techniques
for remote tracking of animals and for noninvasive, hands-off sampling of a range of behavioural,
physiological, genetic and environmental phenomena.
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The study of animal behaviour in the wild is in the midst
of a major transition. In the half century that Animal
Behaviour has been published, field studies of behaviour
have been moving from studies devoted almost entirely
to descriptive natural history to a new stage that also
includes development and testing of explanations for the
causes and consequences of behaviour.

This transformation is not unique to animal behaviour.
As each field of science matures, it passes through three,
broadly overlapping stages of development, characterized
respectively by a preponderance of description, expla-
nation, or synthesis (cf. Wold 1956). In the initial descrip-
tive approach, wonders of the natural world are revealed
and patterns are discerned. Research is based on obser-
vation, description, correlation and classification, on
assessing collective characteristics and demarcating
classes of phenomena. Explanations, when offered at this
initial state in a science’s development, typically are
proposed post hoc, and treatment of quantitative data,
when available, rarely goes beyond descriptive statistics.
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To this day, these are the characteristics of most field
studies of behaviour.

As areas of science shift from pure description to
description plus explanation, the focus shifts from
asking only ‘What?’ to also asking ‘Why?’, and in some
form or other the answer involves an element of causal
inference. Tinbergen (1951, 1972) reminded us not
only to describe behaviour but also to investigate its
evolution, its functional consequences, and its causation,
including external stimuli, internal mechanisms and
development.

Although some explanations are proposed in the
descriptive phase of research, those in the second
phase characteristically include explanations sufficiently
explicit to be tested against empirical research: they can
be confirmed or falsified. A common perception is that
models of behaviour will displace descriptive studies. This
is a misconception. Research in every field of science
contributes, within its domain, to answering the
two, complementary questions: What is the nature
of the world? and, Why is the world the way it is? Our
attempts to answer these two questions are, respectively,
description and explanation. The first without the second
Ltd on behalf of The Association for the Study of Animal Behaviour.
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would be incomplete; the second could not exist without
the first and is totally dependent on it for its veracity. As
we shall document herein, the ongoing transformation of
behaviour field studies involves major developments in
both description and explanation.

In the final, synthetic stage, theories for disparate
phenomena become special cases of more general
theories.

Why is an accelerating transformation to testable
explanations of naturalistic behaviour taking place at this
time? We suggest several reasons. First, cumulative
knowledge of natural history has repeatedly turned up
patterns of behaviour that, along with their exceptions,
cry out for explanation. For example, decades of field
studies revealed that over 90% of bird species pair-bond
‘monogamously’ (Lack 1968). Why the consistency, and
why the exceptions? In attempts to answer, several
models of mating systems have been proposed and tested
(e.g. Orians 1969; Altmann et al. 1977; Lenington 1980;
Vehrencamp & Bradbury 1984; Krebs & Davies 1993).

Second, the study of naturalistic behaviour is sur-
rounded by numerous relevant fields of science, many of
which are relatively mature. In formulating and testing
explanations of behaviour and even in deciding what
phenomena to study, we shamelessly borrow from ecol-
ogy, demography and selection theory, from molecular
genetics, functional anatomy, physiology and nutritional
sciences, and from the physical, mathematical and social
sciences. Other sciences not only provide us with a wealth
of concepts and techniques, they stimulate integration of
behaviour with processes at other levels of organization,
both higher and lower, including genetics, physiology
and life-history processes.

Several developments in engineering and research
design are now greatly facilitating the gathering and
analysis of field data that previously could be obtained
and analysed only laboriously or not at all. Recent con-
ceptual and laboratory developments have also greatly
facilitated important areas of research.

Finally, the transformation has been accelerated by
increased support for field studies during the last half
century, particularly in the decades after World War II.
This support included increased research funding, devel-
opment of long-term field sites, creation at various
institutions of faculty positions earmarked for animal
behaviour research, and increases in the numbers of
scientific societies and journals devoted to naturalistic
behaviour studies.

In what follows, we provide a sampling of this ongoing
transformation of behaviour field studies. We emphasize
several components of the transformation: (1) improved
research methods, including those for research design,
observational sampling and hypothesis testing; (2)
improved tools for obtaining behavioural, ecological,
genetic and physiological data; and finally, (3) descrip-
tions and explanations of greater depth and breadth,
relating naturalistic behaviour not only to ecology and
physiology, but also to social structure, to demographic
and life-history processes, and to population genetics.

In our own field research on primate behaviour, we
have witnessed and participated in many aspects of the
transformation of behaviour field research. Although
here we draw inordinately on our own experiences for
illustration, the changes we describe have been part of a
much more widespread research trend, involving many
people and, to varying degrees, many other taxa.
ADAPTATIONS

In recent years, the concept of adaptations has been
changing in ways that are directly relevant to field studies
of behaviour. Statements about the adaptive significance
of traits, behavioural or otherwise, are being regarded not
merely as plausible, post hoc explanations (Gould &
Lewontin 1979) but as testable hypotheses. The question
underlying virtually all such testable hypotheses is this:
Under given conditions, how would a well-adapted ani-
mal of this species behave? For behaviour, if the answer to
this question is sufficiently explicit, then perforce we
know, for any given pair of individuals, which one has
behaviour that is better adapted to the circumstances. By
an adaptation we mean a phenotypic variant that, within
the environment considered, results in greater fitness
relative to a specified set of competing variants (cf.
West-Eberhard 1992; Reeve & Sherman 1993).

Two separate but intimately related approaches are
used to answer the above question about the adaptive
significance of traits: by testing hypotheses relating to a
trait’s short-term (functional) consequences or by testing
hypotheses relating to its long-term (fitness) conse-
quences. Over the last half century, testable models
relating to functional consequences of behaviour have
been developed for various aspects of every major form
of behaviour: territoriality, mate choice, parental care,
foraging, and so on. Such models about functional
consequences of behaviour predominate over studies
that focus on fitness consequences of behaviour. This
preponderance is well illustrated by research on foraging
behaviour, the type of naturalistic behaviour that has
produced the greatest number of explicit models and tests
thereof (Pyke 1984; Stephens & Krebs 1986; Kramer
2001).

At the heart of function-based models are the short-
term consequences of behaviour, variations of which can
be ordered along an axis of better to worse. For example,
because energy is vital to all biological activities, higher-
energy diets are assumed to be better. In biology, the
ultimate criterion of being better is biological fitness. For
that reason, functional consequences are ordered better
to worse by their (presumed) fitness consequences, and so
are sometimes referred to as ‘fitness surrogates’. Those
individuals that behave so as to maximize the functional
consequences of their behaviour (or minimize it, as
appropriate) are assumed to be better off. (The more
energy that is available for an animal’s activities, the
higher should be its fitness.)

However, the benefits that accrue from any behaviour
also entail costs. There’s No Such Thing As a Free Lunch
(Friedman 1975). These costs are constraints or limiting
factors (Liebig 1840; Blackman 1905; Shelford 1911): they
limit the extent to which functional consequences of
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behaviour can be maximized (or minimized), and so, the
function is said to be optimized. Optimality theory ‘has
revealed a richness and complexity in the patterns of
foraging that could not have been imagined only a few
decades ago’ (Kramer 2001, page 232).

By themselves, function-based models are not able to
address the possibility that our identification of a trait’s
functional consequences is incorrect, that the putative
function may be a consequence that does not increase
fitness. Yet, crucial in modelling adaptive behaviour is
the correct identification of the model’s ‘currency’, the
functional consequence assumed to be optimized. For
example, many foraging models use energy rate as the
currency, whereas in some animals, protein maximiz-
ation (White 1978) or foraging time minimization (Pyke
et al. 1977) may be the primary factor limiting fitness.
Even if an animal’s fitness is energy limited, the rate at
which energy-producing foods are consumed per minute
of feeding may be the wrong currency, rather than, say,
the amount of energy obtained per day, and maximizing
the former does not in general maximize the latter
(Altmann 1998).

In the second approach, the student of behaviour looks
for a correlation between a trait (say, a form of behaviour)
and biological fitness (as estimated by, say, lifetime repro-
ductive success or other life-history components), in the
hope of finding a consistent relationship, a ‘fitness func-
tion’, between the trait and fitness. This can lead, in turn,
to studies of selection on such traits in natural popu-
lations (Endler 1986). However, not all fitness-correlated
traits of an organism are interpretable as adaptations.
Some may be mere by-products of other adaptations
(Gould & Lewontin 1979). To show that the trait in
question actually results in greater fitness, we must ask,
how does it do so?

An adaptation requires a rationale, a mechanism
(Williams 1966). That brings us back to the question of
whether we have correctly identified the functional sig-
nificance of a trait. The most direct way to demonstrate
that increased fitness is the result of a trait, not just a
spurious correlate of it, is to confirm the two intermediate
steps: to show that the trait has particular short-term,
functional effects, and that these, in turn, limit fitness by
altering life-history processes. Suppose that, by hypoth-
esis, a form of behaviour or other trait has certain short-
term effects that supposedly affect fitness. Then, by
taking advantage of intraspecific variability, one can test
the behaviour’s putative adaptive significance by asking
whether those individuals whose behaviour has conse-
quences that come closer to the hypothesized functional
optimum are the ones whose fitness is higher, or at least
(considering equivalent effects) not lower (Altmann
1991, 1998). Studies that combine quantitative data on
all three (i.e. behaviour, its functions, and the fitness-
limiting effects of those functions) are labour intensive.
However, they provide a richness of insights that cannot
otherwise be obtained and, for that reason, we expect
them to become more common.

Of growing importance in behaviour modelling are the
use of dynamic optimization and game theory. This trend
results from the ability of such models to incorporate
context-dependent changes in behaviour, processes that
are ignored in classical ‘static’ optimization models. In
dynamic optimization (Houston & McNamara 1999;
Clark & Mangel 2000), the animal’s optimal choice of
behaviour at any given time depends on its present
condition and the future consequences of its available
courses of action. Thus, these models deal with changing
trade-offs in trajectories of decisions over time. For
example, a great tit, Parus major, cannot defend its terri-
tory by singing and patrolling in the treetops while
simultaneously foraging on the ground. Should a forag-
ing great tit delay further feeding to shore up its territorial
defence? That depends not only on the risk of territory
intrusions but also on what the tit has eaten so far:
a well-fed tit can afford to make the switch sooner
(Ydenberg & Houston 1986). Dynamic optimization
models are currently being applied to diverse forms of
behaviour (e.g. Pratt 1999; Weber et al. 1999; Kaesar et al.
2001; Pravosudov & Lucas 2001; Webb et al. 2002).

Game theory (Maynard Smith 1982, 1984) and the re-
lated concept of evolutionarily stable strategies (Parker
1984) are particularly suitable for modelling the course of
interactions between individuals who are responding to
previous behaviour of individuals that are, in turn, re-
sponding to them. Consequently, game theory is particu-
larly useful for modelling interactions between individuals
that are adversaries or cooperators, or both. Currently,
game theoretic models are being applied to a considerable
variety of behaviour both in humans and in nonhuman
animals (e.g. Noë 1990; Ball & Parker 1998; Fryer et al.
1999; Giraldeau & Caraco 2000; Godfray & Johnstone
2000; Sirot 2000; Dodson & Schwaab 2001; Renison et al.
2002; Richards 2002; Stevens & Stephens 2002).
RESEARCH DESIGN AND STATISTICAL ANALYSIS

Here, we touch briefly on a few topics that are of particu-
lar relevance to the ongoing transformation of behaviour
field studies.
Sample Distribution Biases

Field samples may be biased with regard to group size
(Sharman & Dunbar 1982), to particular behaviours, to age
or sex classes, time of day, and so on. Some of these biases
are unconscious. Some may result from preconceived ideas.
Others inevitably result from field conditions. Conse-
quently, when estimating actual values, the observed
values need to be adjusted for differences in sample sizes
(Question: Why do white sheep eat more than black ones?
Answer: Because there are more of them!) In some situ-
ations, special techniques need to be developed, as we have
done, for example, to calculate mean descent time of
baboons from sleeping trees (Wagner & Altmann 1973) and
time spent in various quadrats of their home range
(Altmann & Altmann 1970).
Rates of Behaviour

A common question: how often does this behaviour
occur? Because the answer usually depends on the span of
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time involved, many questions about frequencies of
behaviour are actually questions about rates, that is,
frequencies per unit of time. Rates can be estimated in
four ways: from samples of the numbers of events in a
fixed amount of time, of the amounts of time for a fixed
number of events, of the number of events per unit of
time where both time and number are random variables
(e.g. bite rates during feeding bouts), and of the inverses
of interevent intervals. Not surprisingly, each of these
methods requires its own type of statistical analysis, but
we do not know of any general survey of this topic. For
the Poisson rate process, statistical methods are avail-
able (Cox & Lewis 1966). However, a Poisson model is
inappropriate for many types of behaviour, particularly
ones that are durable (Rogosa & Ghandour 1991). Recent
statistical analyses of some other rate processes (e.g.
Gardner et al. 1995; Susko et al. 2002) may be useful to
students of behaviour.

Mathematical demography, including survival analysis,
has produced some very useful tools for analysing behav-
ioural field data. Here we consider two. In each case, the
beginnings of intervals of behaviour (bouts) may be
thought of as their births, the terminations, as their
deaths.
Bout Durations and Censored Data

A common problem in field studies of behaviour is that
the observer’s view of the subjects is often interrupted by
intervening foliage or other material, not because the
animal is reacting to the observer but just because
its movements inadvertently interpose view-blocking
objects. Even on short-grass savannah, where we work,
such interruptions are a problem; in tropical rainforests,
they are often daunting. Consider an observer’s focal
sample data for a study on bout lengths of various
activities. While many bouts may have been observed
and timed from beginning to end, for others the actual
duration is not known, because intervening material
blocked the observer’s view of the bouts’ terminations or
of their onsets. Fortunately, the statistical properties of
such ‘censored’ data under various conditions have been
the subject of numerous studies (e.g. Kaplan & Meier
1958; Mantel 1966; Breslow 1970; Meier 1975). Statistical
methods for estimating mean bout lengths and other
distribution properties from censored data are now avail-
able and can be applied to field samples of behaviour
(Bressers et al. 1991; Altmann 1998). Such techniques are
now standard components of major statistical packages
such as SAS/STAT (SAS Institute 1990).
Event Distributions During Bouts

Similarly, demographic analysis can be used to study
the temporal distribution of events during intervals of
behaviour. For example, in sampling patch foraging to
test hypotheses about patterns of resource depression
(Charnov et al. 1976), the consumption of each food item
in a foraging bout is comparable to a birth during the
interval’s (the mother’s) lifetime, and our task is that
of estimating age-specific birth rates.
Research Design

All too often, students of naturalistic behaviour have
returned from the field and discovered that their samples
are too small to provide adequate answers to some of
their questions, yet are unnecessarily large for others. Or
samples, however large, may not be appropriate for the
questions being asked. Fortunately, statistical research
design is increasingly being used in planning and mid-
course evaluation of observational field studies of behav-
iour and the literature on this topic is growing (e.g. Wold
1956; Cochran 1983; Manly et al. 1993; Martin & Bateson
1993; Lehner 1996; Bart et al. 1999). A related develop-
ment is a growing number of experiments on behaviour
carried out in the field. Typically, the most illuminating
of these abide by Tinbergen’s admonition (1951) to
observe the animals’ full range of behaviour first, then
experiment second, so that the most appropriate exper-
iments can be designed. Outstanding examples include
field experiments by Bachmann & Kummer (1980), von
Frisch’s classical experiments on bees, and Tingergen’s
own research. A growing number of acoustical play-
back experiments are revealing a wide variety of social,
perceptual and ecological phenomena (e.g. Cheney 1990;
McComb et al. 1993, 2000; Cheney et al. 1995; Rendall
et al. 1998; Mougeot & Bretagnolle 2000; Semple &
McComb 2000; Fischer et al. 2001; Lewis et al. 2001;
Wilson & Vehrencamp 2001; Charrier et al. 2002).
TOWARDS AN ANIMAL’S-EYE VIEW

Animal behaviour research, like history as it was taught
during the 1950s, has undergone a major transition from
telling the story of a society by describing a few of the
most conspicuous individuals performing their most
spectacular acts, to a story of all individuals all of the
time. In history class and textbooks, it was kings and
queens, war and intrigue, and perhaps a dash of sex. For
animal behaviour, it was often not much different, the
emphasis in this case being on sex and aggression:
warring ants, raping ducks, dominant male primates that
were controlling, leading and protecting the masses while
obtaining sexual access to the females.

In the 1970s and 1980s, a major shift began to occur
that is still underway today. Many factors have contrib-
uted to the development of a much more comprehen-
sive and realistic picture of animal behaviour, but three
stand out: individual identification, systematic sampling
methods and a growing recognition of the biases
that result from ageism, sexism and their attendant
terminology.

Not surprisingly perhaps, the drive to understand indi-
vidual variability and, therefore, the effort to identify
individuals, received particular impetus from researchers
studying nonhuman primates, a mammalian order for
which the importance of individuality is difficult to
ignore. Although one might have expected individual
recognition to be enthusiastically and rapidly embraced
by any student of behavioural evolution, because
intraspecific variability is so central to natural selection,
study of individual primates and attention to individual
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differences was initially considered by some to be
irrelevant or somewhat unscientific. Nevertheless,
students investigating a range of research questions in a
diversity of species from ants to swans to zebras soon
developed observational or minimally intrusive identifi-
cation techniques and were revealing hitherto unappreci-
ated interindividual variability and individual plasticity
in behaviour. (Even in social insects, ‘much of the varia-
bility in behaviour not connected to caste and age poly-
ethism must be attributable to individual differences
in experience’, Wilson 1971, page 165). The resulting
explosion of possibilities for testing a range of evolution-
ary and mechanistic hypotheses will be ongoing for many
decades to come.

Second, the rapid adoption of systematic sampling
methods in field research and the associated concept of
nonexperimental design also had a major role in the
development of less biased and deeper studies of animal
behaviour. A study of the relationships between obser-
vational sampling methods and the types of research
questions for which each is appropriate (Altmann 1974)
apparently filled a widespread need in behavioural
research: that study has been cited more than 3000 times.
See also Rogosa & Ghandour (1991) for statistical proper-
ties of these sampling methods. Quantitative data on
differences among individuals, at various life stages, and
in a diversity of contexts became a reality when system-
atic sampling was combined with individual recognition
and with the earlier insistence on rigour in ethograms.
The promise of such data then demanded better testable
hypotheses, more rigorous analyses, and appropriate
statistical techniques. These needs remain, particularly in
terms of statistical developments.

At the same time, collection and use of the data that
could now be imagined under field conditions cried out
for techniques of data collection that were faster and
easier to analyse than is possible with the classical stop-
watch combined with pencil and paper or tape recorder.
At first, a few intrepid souls carried electronic data collec-
tion devices weighing 5 kg or more, ones that were
vulnerable to dust, rain, dropping when one was chased
by an elephant, and a range of other calamities. Only 20
years later, we take for granted hand-held electronic data
loggers, in which, at the push of a button or two, one
records an event and the time of its occurrence, all in
computer-compatible form. At the end of the day, back at
one’s base camp, the data are transferred electronically
into a computer, which can be powered by solar cells.
Summary statistics can quickly be generated, so that one
can check on, say, sample sizes. The arduous, time-
consuming and error-prone task of transcribing dictated
data or computerizing paper-and-pencil data is
eliminated.

A third major contributor to a less biased and more
holistic picture of animal behaviour has to do with
challenging the ageism and sexism that have been com-
mon in animal behaviour research and related fields of
evolution and behavioural ecology (Hrdy & Williams
1983) and that have resulted from choices of topics and
measures, use of loaded and biased terminology, and
ways of interpreting findings. This transition also began
about 20–25 years ago with challenges to loaded and
biased terminology (e.g. Gowaty 1982), with attention to
selection during juvenile life stages (e.g. Hrdy & Williams
1983) and with a shift in research focus from primarily
males to both sexes and to the contrasting forces shaping
the two sexes (e.g. Hrdy 1977, 1999; Altmann 1980, 1997;
Fedigan 1982; Wasser 1983). Subsequently, research on
sexual selection broadened from a primary focus on male
competition and a secondary one on female choice to one
that is finally beginning to consider the potential of male
choice and female competition and that is extending the
study of female choice through recognition of what
Randy Thornhill (1983) termed ‘cryptic female choice’.
However important cryptic female choice turns out to be
(Eberhard & Cordero 1995; Eberhard 1996), it does now
seem ludicrous that for so long, a female role was ignored
in so-called sperm competition, even though such com-
petition was usually being conducted within the bodies of
females! The transformation is still underway, with both
behavioural plasticity and ontogeny receiving much-
deserved renewed attention (e.g. West & King 1988; King
et al. 1996; West-Eberhard 2003).
LIFE-HISTORY AND INTERGENERATIONAL
STUDIES OF BEHAVIOUR

As animal behaviour studies increasingly encompassed
immature and ageing individuals, not just those in their
reproductive prime, and females as well as males, consid-
eration of complete life histories became possible (Merila
& Sheldon 2000; Grant & Grant 2000). But, research on
different life stages remains primarily that: the same
individuals have only rarely been followed through time,
even for short-lived species. Even when longitudinal data
might have been obtained, as in long-term, bird-banding
studies, the study of individual-based life histories lagged
behind other topics. Perhaps inertia had a role in this
delay. Perhaps, too, people have not appreciated the
extent of covariances among life stages, cohort effects and
the importance of early experience on adult functioning,
although these have long been recognized within studies
of human life histories and a focus on these issues is
routine in human demography and sociology (Manton
et al. 1992; Singer & Ryff 1999; Seeman et al. 2002).
Landmark longitudinal studies of human populations
remain rare but significant. At the same time, quantita-
tive genetic approaches (see Lande 1982; Arnold 1985;
Halliday & Arnold 1987; Arnold & Duvall 1994) and
matrix models (e.g. Stearns 1992; Caswell 2001) have
been greatly developed and are being applied to studies of
behavioural ecology and evolution (McDonald & Caswell
1993; Alberts & Altmann 2003).

None the less, challenges to obtaining appropriate
lifetime demographic and behavioural data remain. One
practical challenge is associated with some of the very
life-history variants we seek to understand. The wide-
spread presence of dispersal and the sex-biased nature of
dispersal of many species often have posed seemingly
insurmountable obstacles to obtaining lifetime behav-
ioural and life-history data even in long-term field
studies, hindrances circumvented in the species and sites
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for three particularly rich and well-known studies:
of scrub-jays, Aphelocoma coerulescens (Woolfenden &
Fitzpatrick 1984), Darwin’s finches (Geospizinae: Grant &
Grant, 1989, 2002) and red deer, Cervus elaphus (Clutton–
Brock et al. 1982; Kruuk et al. 2000).
TECHNIQUES FOR REMOTE AND INDIRECT
BEHAVIOUR MONITORING

Advances in remote tracking of radiotagged animals are
beginning to contribute immeasurably, both in enabling
one to locate animals that otherwise would have been
very difficult or impossible to find and also in providing
indirect evidence of behaviour that occurs in our absence.
Examples include automated tracking of deer by Yagi
antennas; studies of marine animals for whom attached
measuring devices record and store a month of data on
location, level of activity and physiological information;
radiocollared elephants or long-distance migrating birds
whose physiology is monitored by radiotracking from
vehicles, from airplanes, or now by satellites (Bevan et al.
1994; Guyton et al. 1995; Block et al. 1998, 2001; Lutcav-
age et al. 1999; Butler et al. 2000; Boehlert et al. 2001;
Beck et al. 2002; Wikelski & Cochran, in press).

Within this decade, we are likely to have far greater
capacity for remote tracking. For example, in a project
dubbed Zebranet (Schultz 2002), wild animals will carry
radiotags that can ‘talk’ to each other. Thus, when two
tagged animals interact or are near each other, the logged
information from each will be transferred to the other,
and as a tagged lion eats a tagged zebra, all the stored
information about the activities of the prey and all other
tagged zebras that it has been near will be transferred to
the lion’s tag! On Barro Colorado Island, Panama, arrays
of directional antennas on seven towers will, by next
year, enable radiotagged animals to be located almost
anywhere on the island (Larkin et al. 1996; Wikelski
2002) and the ICARUS initiative (ICARUS 2002) will
make possible the tracking of intercontinental songbird
migrations.

Similarly, in the tradition of Muybridge’s (1887) early
trip-camera studies of locomotion, animal-activated
sound recorders and still or video cameras have been used
to great advantage in recent decades to record behaviour
in the absence of an observer (Frith et al. 1996), revealing
unknown or poorly documented aspects of behaviour
and enabling hypothesis testing where only rare case
studies would otherwise be available.

Analysis of isotopes in faeces can reveal the trophic
levels of animals and the proportions of browse
versus graze that herbivores consume (Tieszen 1991).
Microscopic analysis of plant residues in herbivore faeces
can, laboriously, reveal their diet (Stewart & Stewart
1970).

Of course, technical developments have also benefited
studies of observable animals, greatly improving the qual-
ity and scope of field data. Locations, once recorded on
laboriously drawn maps, can now be obtained with sub-
metre accuracy almost anywhere in the world from satel-
lite information by way of hand-held instruments, using
the Geographic Positioning System (GPS). The speed of a
running or flying animal can be measured precisely by
instruments that use Doppler-effect phase shift (Tong
2002). For measuring distances, hand-held, laser-based
range finders have an accuracy of one part per thousand.
Some come with a built-in, electronic compass. One can
foresee an offshoot of these in which the laser beam is
pointed in turn at each animal in a group, and the
instrument records the group’s geometry, that is, the
spatial deployment of the individuals relative to each
other. Although precision heat-sensing devices are not
yet within the price range for most field use, West &
Packer (2002) used a borrowed one to great advantage in
a study of body heat of lions that differed in mane colour.

For recording animal sounds, parabolic reflectors,
which need to be large for sounds of low frequencies or
low intensities, can be replaced by ‘shotgun’ micro-
phones, which are far more compact and thus less
intrusive as well as more manageable. For many years,
portable Nagra recorders have made possible high-
quality field recordings of animal sounds, and sound
spectrographs have provided the means of analysing
their temporal, frequency and amplitude components.
Repositories and distributors such as the MacCauley
Library of Natural History Sounds at Cornell have greatly
expanded and also increasingly serve as a source of
information about equipment and software for acoustics
analysis. Like other research areas, field studies benefit
from the Worldwide Web’s ability to facilitate locating,
obtaining and distributing information.

Perhaps the one major piece of field equipment that
has had only minor improvements in the last half
century is the field vehicle: still too uncomfortable, too
fragile and too expensive.
TECHNIQUES FOR BEHAVIOUR-FRIENDLY
PHYSIOLOGICAL STUDIES

Just as remote tracking and recording provide clues and
indirect measures or traces of behaviour that we are
unable to observe directly, other methodological develop-
ments are enabling the testing of hypotheses about causes
and consequences of behaviour in undisturbed natural
populations, hypothesis testing that was previously
impossible for many species, particularly without intoler-
able disturbance. One such area is field measurement of
physiological variables, including indicators of body con-
dition (Knott 1998), energy expenditure (Schoeller 1988)
and steroid concentrations (Sapolsky 1993; Soma &
Wingfield, 2001; Wingfield et al. 2001). The landmark
physiological studies, such as those of Sapolsky and
Wingfield, required blood sampling, which is still needed
for many physiological variables (e.g. energy expenditure
and total body fat, measured through isotope-labelled
water; Schoeller 1988).

For some species or for repeated sampling of individ-
uals, trapping or darting to obtain blood samples is not
always desirable, feasible, or in some cases legal. Thanks
to emerging methods for completely noninvasive hands-
off sampling, through use of urine or faeces, we can
obtain a greatly enhanced window into an individual’s
physiology throughout its lifetime. For some species and
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habitats, urine sampling is possible, increasing the range
of hormones that can be measured (Andelman et al. 1985;
van Schaik et al. 1991; Robbins & Czekala 1997). For
others, only faeces are feasible, thereby restricting the
range to steroid hormones but enhancing the ability to
obtain measures that are integrated over time (Brockman
& Whitten 1996; Whitten & Russell 1996; Savage et al.
1997; Whitten et al. 1998). Initial studies using urine
or faeces have included a range of mammals, such as
mongooses, wild dogs, wolves, elephants and primates
(Monfort et al. 1998; Creel et al. 2002 and references
above). As validation extends to more species, conditions
and hormones, the potential is enormous. Noninvasive
hormone sampling has thus far been implemented pri-
marily in mammal species. However, recent docu-
mentation of variability among avian species in timing of
the stress response to capture (e.g. Romero & Romero
2002) may be one of several factors that will favour
application of these techniques to avian and other taxa.
GENETIC RELATEDNESS AND BEHAVIOUR

Many questions about behavioural ecology and adapta-
tion require measures of fitness and of genetic relatedness
among individuals. A few decades ago, relatedness within
natural populations was deduced almost entirely from
observations of broad categories of social behaviour. For
example, avian social pair bonding and offspring care by
an adult male and female were assumed to indicate
monogamy. This situation best represents the revolution
initiated by numerous recent advances in molecular gen-
etic techniques and applications (e.g. PCR, microsatellite
developments, and the Human Genome Project). When
various ‘monogamous’ species were suddenly found to be
not so (e.g. Gowaty & Karlin 1984; Westneat 1987;
Gowaty & Bridges 1991), some at first doubted the
genetic results. However, with confirmation and with
similar findings in many species (Birkhead & Møller
1992), the pendulum soon swung the other way, with
many questioning any ability to predict parentage from
behaviour! The problem, of course, was not with behav-
iour but with the level of behaviour that was being
recorded by researchers. The nestling’s true father must
have mated with the mother, but observers did not
observe these matings.

If anything, the genetic results of the past decade
have reminded us that behaviour must be taken more
seriously, not less, and studied with rigour. We cannot
count on gross measures several steps removed. For
example, even in a ‘promiscuous’ (more accurately,
polygynandrous) species like the savannah baboon, Papio
cynocephalus, that we study, we identified conditions
in which not only observed mating behaviour but
also male dominance status were excellent predictors
of paternity distribution (Altmann et al. 1996). However,
we also postulated the conditions under which such
a dominance-based ‘queuing’ model of mating behaviour
and paternity would not hold. This hypothesis
has received support in recent tests (Alberts et al.
2003); genetic investigations are underway in Alberts’
laboratory.
One of the results of the growing number of parentage
studies in wild populations is the realization that not only
do some offspring have different parents than assumed by
observers (and perhaps by the putative parents), but also
that females are mating with more than one male and are
even seeking these additional matings, the final blow to
the Victorian and male-oriented remnants of an earlier
era of animal behaviour studies. Therefore, not only
should we not assume that pair-bonded female birds are
being ‘raped’ when they mate with a nonmate, but we are
also obliged to recognize that ‘rape’ may occur within
pair bonds, and perhaps, what was previously called
‘rape’ outside a pair bond is an instance of ‘adultery’, of
paternity confusion, or some other aspect of females’
control over their own reproduction (Smuts & Smuts
1993; Gowaty 1994, 1997). We are only beginning to
elucidate the many ways that females and males affect
their potential for offspring production (Hrdy 1999).

In addition, evolutionary geneticists are finally joining
with behavioural ecologists in acknowledging the need
for studies that cross generations, not stopping with
mates obtained or even with zygotes produced. As evol-
utionary models and empirical research increasingly
include topics such as parental effects (alas, termed
‘maternal effects’) and as developmental biology at its
best begins to elucidate the transformation of genotype to
phenotype at all life stages and within the full range of
potential contexts, we will come full circle in focusing
on the whole individual, in its social and ecological
contexts and throughout its life, the subject that orig-
inally captured the attention of so many of us. We can
now do so with the potential to dig much deeper than we
could previously and in the process we shall find even
more exciting uses for the emerging technologies than
the particular tasks for which they were developed. We
can already provide an example. Genetic analysis can be
carried out not only on blood, muscle or other tissue, as
in the earlier studies cited above, it can also be done on
hair or faeces, which can be obtained from undisturbed,
wild, but identified individuals (Höss et al. 1992; Inoue &
Takenaka 1993; Sugiyama et al. 1993; Morin et al. 1994;
Kohn & Wayne 1997). This makes possible both determi-
nation of genetic relatedness and also the study of
population genetics and its relation to group processes
without compromising behaviour-sensitive investi-
gations (Melnick 1987; Melnick & Goldstein 1988; Morin
et al. 1994; Alberts 1999; Constable et al. 2001; Vigilant
et al. 2001; Smith et al., in press).
CAVEAT

Recent and continuing advances in concepts and
methods are beginning to transform field research in
ways that could hardly be imagined 50 years ago when
this journal began publication. We are able to study not
only the behaviour of animals in the wild, but also, its
causes and its consequences. That does not mean that we
can do such studies with just our binoculars, a pair of
boots, and a beaten-up field vehicle, although we still
need these. Many of the tools of modern research on
naturalistic behaviour are costly, for both field work and
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the related laboratory investigation: genotyping and
sequencing, sound recording and analysis equipment,
physiological assays, and so on. A major and essential
challenge to our community for assuring the health of
future decades of animal behaviour research will be to
convince the sources of funding that such research
requires the budgets of modern biology to achieve both
the potential of animal behaviour research and of the
reductionist fields to which, in exchange for their tools
and approaches, it can contribute valuable insights into
the significance of lower-level processes. If we keep our
eyes on our animals, if we retain what Helen Fox Keller
(1983) termed ‘a feeling for the organism’, animal behav-
iour will never be a field that is tool-driven, but we must
become a field that is tool-enabled if we are to answer
many of the central questions of behavioural biology.
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