Matrix Models for Primate
Life History Analysis

SusaN C. ALBERTS AND JEANNE ALTMANN

A major theme of this book is the analysis of primate life histo-
ries through broad interspecific comparisons of selected life history traits. In
this chapter we present a complementary approach using demographic ma-
trix models, which allow for a detailed analysis of the life history (the sched-
ule of survival and reproduction across the life span) of a single species. This
approach has not yet been used extensively for nonhuman primates, but
as demographic and life history data accumulate on an increasing number of
species, matrix models will offer a powerful means of exploring life history
variation within species as well as alternative ways of exploring interspecific
differences. '

Demographic matrix models produce two results of major interest. The
first is A, an estimate of the population growth rate, which is also analytically
equivalent to the relative fitness of the mean phenotype in the population
(van Groenendael, de Kroon, and Caswell 1988; McDonald and Caswell
1993; Caswell 2001). The second is elasticity (or sensitivity), which estimates
the effect of perturbations in life history parameters on A. In an ecological
context, elasticity analyses reveal how population dynamics change as indi-
vidual life history parameters change. In an evolutionary context, elastici-
ties measure the relative strength of selection on life history parameters.
Thus, demographic models can provide evolutionary as well as ecological
insights.

Demographic matrix models have several applications. First, they pro-
vide a method for evaluating the viability of populations that are threatened
or endangered and for assessing management strategies for such popu-
lations. For example, Heppell, Walters, and Crowder (1994) used a matrix
model and elasticity analysis to examine a declining population of endan-
gered red-cockaded woodpeckers. They determined that a critical factor af-
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fecting the population growth rate (A) was the probability that a nonbreed-
ing male woodpecker would become a breeder; perturbing their model by
increasing the proportion of nonbreeding males that became breeders re-
sulted in a relatively large increase in A. They noted that the rate at which
nonbreeders become breeders in this species is dependent on the availabil-
ity of nesting cavities, and proposed that management efforts should focus
on increasing the number of potential nesting cavities for woodpecker
populations.

Second, the demonstration that X is equivalent to fitness and that sen-
sitivities are equivalent to selection gradients (Lande 1982a; McDonald
and Caswell 1993; Caswell 2001) means that the strength of selection on life
history parameters can be estimated. For example, McDonald (1993) used
elasticity analysis to demonstrate that, for male long-tailed manakins, selec-
tion on survivalis an order of magnitude stronger than selection on fertility,
a somewhat counterintuitive result for a bird species with elaborate male
displays and extreme variance in male reproductive success. McDonald also
demonstrated that selection on prereproductive survival is much stronger
for male manakins than it is for females and that male generation times are
more than double those of females. The consequences of such sexual differ-
ences in demographic parameters have been little explored.

Third, while most uses of matrix demography have focused on within-
population analysis, matrix methods can also be used to examine patterns
across populations and even between species. For example, Pfister (1998)
performed a broad interspecific comparison of phenotypic variance in life
history traits and found that over a wide variety of taxa, ranging from annual
plants to long-lived vertebrates, phenotypic variance tends to be lowest in
traits with high elasticities (traits that have a large effect on fitness). This
finding suggests that natural selection has resulted in the evolution of a suite
of traits that minimizes temporal variation in fitness, which in turn supports
the notion of bet hedging (i.e., that reduced phenotypic variance in fitness is
selected for because it increases lifetime fitness: Stearns 1992; Benton and
Grant 1999).

The purpose of this chapter is to provide an introduction to demo-
graphic matrix methods for the analysis of primate life histories, using ex-
amples from an analysis of baboon life histories. The wide applicability
of matrix models makes them a useful tool for life history analyses from
several perspectives. Their usefulness for conservation applications in par-
ticular is unequaled by other methods. Their use for analyzing fitness dif-
ferences among individuals and for identifying selection pressures over-
laps with that of the multivariate methods developed by Arnold and Wade



68 SUSAN C. ALBERTS AND JEANNE ALTMANN

(1984a,b) and Brown (1988), and we therefore conclude this chapter with a
brief comparison of matrix methods with these multivariate methods. For
additional introductions to matrix methodology, the reader is referred to
van Groenendael, de Kroon, and Caswell (1988), McDonald and Caswell
(1993), and Morris and Doak (2002). For more detailed discussions of ma-
trix models, the reader is referred to Caswell (2001).

Background

Life history theory describes the distribution of mortality and reproductive
effort over the life span (Roff 1992; Stearns 1992). Life history traits include
size at birth, pattern of growth, age at first reproduction, age-specific fertil-
ity, age-specific mortality, longevity, and number, size, and sex ratio of off-
spring. Life history theory asserts that these traits have evolved as a suite,
with the target of selection being fitness over the lifetime rather than in-
stantaneous fitness or maximization of any single trait.

The general approach for examining the life history of a particular spe-
cies is to construct a model of the average life history in a given population,
using age-specific rates of survival and reproduction. Collectively, these are
known as vital rates, and in a real sense they define a life history: they en-
compass the probability of surviving for any given time period, the age at
first reproduction, the rates of reproduction thereafter, and the average lon-
gevity. The model then generates a measure of population growth rate, as
well as projected estimates of a population’s size and its age distribution over
specified time periods. The model can also serve as a point of comparison
for variants of the mean life history, making it possible to compare the mean
vital rates with a range of alternatives.

Historically, most demographic models have taken the form of life
tables, or [,m, tables (see Sade et al. 1976; Altmann et al. 1977; Ricklefs
1983; Stearns 1992, chap. 2; Charlesworth 1994, chap. 1, for examples and
discussions). In the last two decades, however, developments in demo-
graphic analysis have greatly extended classic life table analysis, overcoming
some of its limitations and advancing methods for studying variation in vital
rates (for excellent introductions, see van Groenendael, de Kroon, and Cas-
well 1988; McDonald and Caswell 1993). These developments have yielded
several important results, three of which are particularly relevant to this
chapter. First, life histories that are difficult to describe in terms of age-
specific fertilities and mortalities (such as those in which size or social status
is a better predictor of vital rates than age) can be analyzed using stage-
specific vital rates. Second, perturbation analyses of demographic models
provide a simple method for examining the consequences of changes in
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vital rates, as exemplified by the red-cockaded woodpecker example (Hep-
pell, Walters, and Crowder 1994). Finally, the analytic demonstration
(Lande 1982a,b; see also McDonald and Caswell 1993; Caswell 2001) that
), the measure of population growth rate, is equivalent to the relative fitness
of a given life history (i.e., of a set of vital rates) means that matrix ap-
proaches can be used to describe the effects of life history changes at the
level of the individual (in terms of the relative fitness of different pheno-
types) and at the level of the population (in terms of effects on population
growth).

Constructing the Model

Projection Matrices and Life Cycle Graphs

A demographic analysis of life history can be formulated as a projection ma-
trix (so called because it allows one to project estimates of population size)
or as a life cycle graph. These are exactly equivalent formulations: the ma-
trix representation is more traditional, while the life cycle graph is consid-
ered by many to be more intuitive. In the life cycle graph (fig. 4.1A), each
age class is represented by a node, and arrows between the nodes represent
the probabilities of moving from one age class to the next. Arrows back to
the first age class represent age-specific fertilities. In the matrix formula-
tion (fig. 4.1B), the vital rates are represented by the elements, a;;, of the ma-
trix. The first row of the matrix, with elements a,;, represents the expected
production of newborns by each age class (known as fertilities; see appen-
dix 4.1), and corresponds to the arrows back to the first age class in the life
cycle graph. Subsequent rows represent the probabilities of moving from
one class to another. In general, rows can be thought of as representing dem-
ographic input to the corresponding age classes, with columns representing
their demographic output (fig. 4.1B).

Multiplying the projection matrix by a vector representing the current
numbers of animals in each age class (the census vector; see fig. 4.1B) yields
an estimate of the population size and age distribution in the next time pe-
riod (see Caswell 2001, appendix A, for a clear introduction to the rules of
matrix manipulation). Repeated multiplication, then, gives the population
size and age distribution after any arbitrary number of time units. The time
unit over which population size is calculated is known as the projection
interval.

Determining the Projection Interval

The first step in constructing a demographic model is determining the pro-
jection interval—the period over which one will measure vital rates and take
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Fic. 4.1. (A) Life cycle graph for a population with four age classes,
in which reproduction occurs in each age class. (B) Projection matrix
with census vectors corresponding to the life cycle graph in part A.
Rows can be thought of as representing demographic input to the
corresponding age classes, with columns representing their demo-
graphic output. For instance, the cell at the intersection of the first
row and the third column (a,;) designates production of newborns
by animals in the third age class (input to the first age class, output
from the third). The cell at the intersection of the fourth row and the
third column (a,;) designates the probability of surviving from the
third age class to the fourth (input to the fourth class, output from
the third).

censuses. To some extent this is an arbitrary choice, but the interval must be
long enough to yield meaningful vital rates (for instance, daily survival and
fertility measures will not yield reasonable values for vertebrates). Further,
to ensure accurate estimates of vital rates, the interval should not be longer
than the duration of the age classes (for instance, if the projection interval
were two years, the resulting census data would allow estimation of survival
from two to four years of age, but not from two to three years of age; thus,
the age classes for such a model must be two years in duration). For primates
and many other large-bodied animals, a projection interval of one year is
convenient because it often encompasses a single birth season. Estimates
of yearly survival and birth rate for each age class are then retrieved from
yearly censuses or from continuous observations.

Age-Structured versus Stage-Structured Models

The next step is to determine whether the life history in question is best
described by an age-structured model or a stage-structured model. Age-
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structured models are appropriate if mortality or fertility changes with age,
and if age can be accurately measured. For instance, a matrix representation
of a population of female baboons in Amboseli, Kenya, is a 27 X 27 matrix
describing survival and fertility for 27 age classes (fig. 4.2A); the 21 X 21 ma-
trix for Amboseli males reflects the fact that males in this population have
shorter life spans on average than females do (fig. 4.2B). Note that some life
history characteristics, such as age at first reproduction and life span, are ap-
parent in the matrix and that others, such as life expectancy, can readily be
calculated by simple multiplication of the diagonal elements.

In many cases, however, such fine-grained age classifications are not
possible. Instead, researchers identify individuals only as infants, young ju-
veniles, older juveniles, young adults, and so forth. In such cases, stage-
based models may be employed, as illustrated by a stage-based life cycle
graph for female elk in Yellowstone National Park, USA (fig. 4.3; Dixon
et al. 1997). Some cautions are required in constructing stage-based models
of this sort, and these will be described in more detail below.

Finally, for some species, an individual’s reproductive status and survival
probabilities depend more on its position in the social group than on its age
(among primates, callitrichids are the best example). In these cases, a stage-
based model may be most appropriate, as illustrated by a stage-based model
for male red-cockaded woodpeckers, cooperatively breeding North Ameri-
can birds (fig. 4.4; Heppell, Walters, and Crowder 1994).

Cautions for Constructing Stage-Based Models

While age-based matrices (Leslie matrices; after Leslie 1945) are histori-
cally most common, stage-based matrices (Lefkovitch matrices; after Lefko-
vitch 1965) are increasingly popular because their flexibility makes them ap-
plicable to a wide range of species and data sets. We have described two
types of stage-based models: those in which vital rates are better predicted
by social status than by age (as in red-cockaded woodpeckers), and those in
which vital rates are age-specific but the data are not sufficiently fine-grained
to generate age-based models (as in Yellowstone elk).

In constructing stage-based models, two points bear emphasis. First, the
duration of the stage class is independent of the length of projection inter-
val, the period over which vital rates are measured. Regardless of the length
of the projection interval and the duration of the stage classes, vital rates are
calculated as the number of events per interval (Caswell 2001). For instance,
in the model of Yellowstone elk (see fig. 4.3), some classes cover one-year
durations while others cover several years (e.g., class 4 comprises three- to
seven-year-olds). In both cases, survival and fertility are calculated yearly
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FiG. 4.2. Demographic matrices for wild-foraging baboons in Amboseli, Kenya (birth-flow model)



MATRIX MODELS FOR PRIMATE LIFE HISTORY ANALYSIS 73

Fic. 4.3. Life cycle graph
for female elk in Yellow-
stone National Park.
Stage classes: 1, new-
borns; 2, yearlings; 3,
2-year-olds; 4, 37 years;
5, 8-15 years; 6, 16-20
years; 7, 20+ years.
(After Dixon et al. 1997.)
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FiG. 4.4. (A) Projection matrix for male red-cockaded wood-
peckers. Stages: 1, fledgling; 2, helper; 3, floater; 4, solitary; 5,
1-year-old breeder; 6, older breeder. (B) Life cycle graph for
male red-cockaded woodpeckers; no fertilities and only some
transition probabilities are shown. Ps represent survival prob-
abilities; Gs represent probabilities of transition from one
stage to another. (After Heppell, Walters, and Crowder 1994.)

(i.e., the projection interval is one year). The projection interval is indepen-
dent of the duration of stages, and must be the same for all classes.
Second, choosing the durations of the stages is a critical step. If stages
of long duration are chosen, one runs the risk of pooling together ages that
have very different vital rates (Vandermeer 1978; Benton and Grant 1999).
For instance, if three-year-old elk have much lower survival rates than four-
to seven-year-old elk, then grouping them into a single class of three- to
seven-year-olds will inflate their survival, and will consequently inflate A —
the model will, in essence, project that three-year-olds will remain alive and
reproduce for longer than they really do. A good rule of thumb is to avoid
grouping the early age classes, which often have high and rapidly decreasing

mortality rates. Employment of this rule often coincides with available data, -

as researchers typically have more fine-grained age estimates (and thus sur-
vival data) for infants and young juveniles than they do for adults. In the case
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of Yellowstone elk, the first three classes each represent one-year intervals,
and grouping is not employed until well into adulthood, when mortalities
are likely to be less variable over larger age spans (see fig. 4.3, Dixon et al.
1997).

Obtaining Vital Rates

Initial Decisions about the Matrix

Vital rates, the elements a;; of the projection matrix, may be obtained from
continuous observational data or from periodic census data. In constructing
a matrix model, several key decisions must be made prior to beginning.
These decisions include (1) which sex will be modeled, (2) whether the pop-
ulation will be modeled as a birth-flow or a birth-pulse population, and
(3) whether the censuses (either actual or taken from a long-term database)
will occur before the birth season (a prebreeding census) or after (a post-
breeding census). The implications of each decision are described below.

Males versus females. Unless females and males exhibit the same vital rates
(generally not the case for primates), separate models will be constructed
for the two sexes. Within any population, the sexes will vary in their age dis-
tributions, in their reproductive patterns, and in how changes in these pa-
rameters affect fitness. However, models for each sex should yield roughly
equivalent values of A; this must be the case unless one sex is increasing in
frequency relative to the other. For questions of general population dynam-
ics, females are typically modeled (e.g., Yellowstone elk: Dixon et al. 1997),
both because of the relative ease of measuring female fertility rather than
male fertility and because, particularly among mammals, females are often
the nondispersing sex, leading to better data on female survival rates. In
some cases, conservation issues may be highly sex-specific, so that one sex
rather than the other becomes the focus of demographic models (e.g., male
red-cockaded woodpeckers: Heppell, Walters, and Crowder 1994). In evo-
lutionary studies in which selection pressures on life history are likely to
be different for the two sexes, both sexes are modeled if possible (e.g.,
McDonald 1993). Reproductive data for males are often difficult to obtain,
but if paternity data come from genetic studies or behavioral data have been
validated with genetic data (both of which are being accomplished for a
number of primate populations; e.g., de Ruiter, van Hooff, and Scheffrahn
1994; Altmann et al. 1996; Bercovitch and Niirnberg 1996; Borries et al.
1999), the task is somewhat less onerous.

Birth-pulse versus birth-fiow populations. Many primate species reproduce
seasonally, so that all births occur within a fairly short period. Such species
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are termed birth-pulse populations. Species such as baboons and the great
apes, which reproduce throughout the year, are termed birth-flow popula-
tions. In both cases, the matrix model makes the simplifying assumption that
age classes are discrete and that population growth is a discrete rather than
a continuous process. This assumption is less troublesome for birth-pulse
populations than it is for birth-flow populations. Birth-flow methods for
calculating matrix elements are designed to mitigate the effects of assuming
discrete population processes, and so are more complex than birth-pulse
methods. Below we present a birth-pulse model for a hypothetical popula-
tion of seasonally breeding monkeys, as well as birth-pulse and birth-flow
models for female baboons in Amboseli. In some cases, the results of birth-
flow and birth-pulse models for the same population may be quite different
(Caswell 2001). However, the results of our birth-flow and birth-pulse mod-
els for Amboseli baboons are very similar, suggesting that in some cases a
birth-pulse model provides an adequate description of population pro-
cesses, even for birth-flow populations.

Prebreeding versus postbreeding censuses. For a birth-pulse population, if the
census takes place before the birth season each year (a prebreeding cen-
sus), it includes pregnant females and nearly-one-year-olds, but not new-
borns. Hence, survival during the first year of life is not observed directly,
although it can be inferred by taking the difference between the number of
pregnant females each year and the number of one-year-olds each subse-
quent year. In contrast, if the census takes place immediately after the birth
season (a postbreeding census), newborns are counted each year, and sur-
vival during the first year of life can be observed directly by censusing each
newborn cohort both immediately after birth and immediately after its first
birthday. Prebreeding and postbreeding censuses yield exactly equivalent
estimates of population growth (Caswell 2001). In the birth-pulse models
presented here, we employ postbreeding censuses (i.e., we count newborns).
We do not cover methods for employing prebreeding censuses, as many of
the principles are the same. However, care must be taken to make explicit
which type of census is being taken, as it affects calculations of both survival
and fertility. We recommend Morris and Doak (2000) and Caswell (2001) to
interested readers.

A Birth-Pulse Model for a Hypothetical Population

of Seasonally Breeding Monkeys

Here we present a birth-pulse model that employs a postbreeding census for
females in a hypothetical monkey population that reproduces seasonally
(table 4.1 and fig. 4.5). We have made some simplifying assumptions to make
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the process of calculating vital rates clear. In particular, we assume (1) that
all females gave birth to a single offspring at the same time each year (and
hence gave birth on or near their own birthdays), (2) that yearly census data
are available, (3) that the censuses were taken immediately after the births
occurred, (4) that all newborns were counted, and (5) that the population is
now extinct, so that no population processes were ongoing when the model
was constructed. In table 4.1, the numbers of individuals in each age class
represent census data that are pooled over a number of years.

Survival (P;). In the case of a postbreeding census, survival, P, is the proba-
bility of surviving from age class (i — 1) to age class i. For each age class, the
fate of all animals that ever entered that class must be determined; that is,
animals must be designated as having survived through the age class or died
in it. Survival for each age class can be calculated as simply (1 — hazard),
where the hazard is defined, in this simple case, as the proportion dying in
the age class (table 4.1, column J).

It is also valuable to calculate survivorship, /(i), which is the probability
of surviving from birth to the ith birthday (i.e., to the end of age class i in the
case of a postbreeding census: table 4.1, column I). Matrix models begin
with age class 1 (there is no 0 age class), but survivorship of newborns. /(0),
is retained as a placeholder, and is set to 1.00 (see tables 4.1 and 4.2). Sur-
vivorship, (i), is calculated as the number of females that survive to the ith
birthday divided by the number of females ever born. Thus, survivorship is
a cumulative measure of survival (the proportion of all animals born that
survive to the ith birthday), while survival, P, is a conditional one (the pro-
portion that survive age class ;, given that they entered age class 7). In most
presentations of matrix methodology, survival is presented as

10

and it can be seen in table 4.1 that this yields the same values for P, as does
(1 — hazard).
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Birth rate (m;) and fertility (F;). The calculation of fertility can be a source of
confusion in matrix models, even though it may seem intuitively straightfor-
ward. The desired fertility rate for age class i is the expected number of fe-
male offspring born to a female entering the ith age class. In the case of the
birth-pulse population presented in table 4.1, F; can be calculated directly by
dividing the number of female offspring produced by females in age class i
by the number of females that ever entered age class i (column H/column E;
see notes to table 4.1).

Care must be taken here to distinguish fertility, F,, from the birth rate,
m,, which is the average number of offspring produced by a female who
reaches her ith birthdav (Caswell 2001, p. 27). More females enter the ith age
class than reach their ith birthday unless survival for the age class is 1.00
(which will be rare). Thus, the age-specific birth rate, m;, will be higher than
the age-specific fertility, F,. In table 4.1, age-specific birth rate, m,, is calcu-
Jated as the number of female offspring born to females in age class i (col-
umn H), divided by the number of females that gave birth in age class i (col-
umn H again, assuming all births are singletons) plus the number of females
that survived through age class i but did not give birth (column G).

In most descriptions of how to produce vital rates, fertility for post-
breeding censuses is described as

F,= Pm,.

In table 4 1 it can be seen that this equation produces exactly the same value
of F, that is produced by dividing number of births by number of females en-
tering the age class (see notes to table 4.1).

A Birth-Flow Model for Female Baboons in Amboseli

Three things distinguish the birth-flow model we constructed for baboons
from the birth-pulse model presented above. First, the.Amboseli baboons
reproduce year-round, so that no clear birth season occurs. This reproduc-
tive pattern both makes the population better suited to a birth-flow than a
birth-pulse model and makes the calculation of the vital rates less obvious.

Second, for the baboons, we had continuous data rather than yearly cen-
suses. In principle, we could have easily constructed, post hoc, the equiva-
lent of yearly censuses from the continuous data. This would be a reasonable
approach to the use of continuous data. However, we wanted the more ac-
curate survival estimates obtainable from continuous data.

Finally, the population was still extant at the time we constructed the
matrix, so our analysis included many incomplete life histories (i.e., many
females were still alive and contributing to population growth at the time of
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the last census). Data on incomplete life histories are termed censored data,
since the fate of each animal alive at the time of the last census (will it die in
its current age class? survive to the next age class? reproduce in the current
or future age classes?) is unknown. Including censored data is important,
particularly in studies of long-lived species, because the sample of com-
pleted life histories is often biased toward animals that died young.

There are several methods for handling censored data, some of which

can be used with either yearly census data or continuous data. For instance,
Proc Lifetest, a computational program in SAS, produces age-specific sur-
vival estimates using numbers of animals that died or were censored in
each age class. (For a clear description of how to produce survival estimates
manually or using SAS, see Kalbfleisch and Prentice 1980; Lee 1992; Alli-
son 1995.)
Birth-flow survival using continuous data. Survival, P, is the probability that
an individual in age class i will survive from time ¢ to ¢t + 1. To calculate this
probability for birth flow populations, the first step, for each age class, is to
designate all animals that ever entered that age class as having survived,
died, or been censored in that age class. For studies with continuous data on
survival, we recommend the following method, which we employed for the
Amboseli baboons. We calculated the age-specific hazard rate, H,;, as

H;=N/T,

where N, = the number of individuals that died in the ith age class and T; =
the total “exposure” time in the ith age class—the cumulative length of time
that all individuals that entered the ith age class, including those that died,
survived, or were censored in it, spent in it. For instance, in Amboseli, five
females died while they were between eighteen and nineteen years of age
(i.e., while they were in the nineteenth age class), and exposure time in the
nineteenth age class totaled 4091 female-days (11.2 female-years). Some of
this exposure time was contributed by the five females that died during the
age class, some by females that survived through it, and some by females
that were censored during it. The resulting hazard rate for the nineteenth
age class is thus 5/11.2, or 0.4464 (table 4.2).

In the case of the birth-pulse model, it was helpful, but not critical, to
calculate survivorship, [(i), but for the birth-flow model, both survival and
fertility values depend on estimates of survivorship, the probability of sur-
viving from birth to the ith birthday (Caswell 2001, chap. 2). We estimated
survivorship, (i), as follows:

y=Q-H)Ii-1)
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Thus, /(19) = (1 — H,4)I(18), or (0.5536)(0.1311) = 0.7256 (table 4.2). Note
that /(0), the survivorship of newborns, is by definition 1.0 (table 4.2).
Survival values, P, for birth-flow models (Caswell 2001, chap. 2) can
then be estimated as
1) + 1(i + 1)
Ui - )+ G

(For other possible estimates, see Caswell 2001, chap. 2.)

Birth-flow birth rates (m;) and fertilities (F;). Recall that the birth rate, m,, is
the average number of offspring produced by a female who reaches her ith
birthday (Caswell 2001, p. 27), or

where B, is the number of births to females in age class i and N, is the num-
ber of females that survived to their ith birthday without giving birth plus
the number that gave birth in the ith age class (i.e., on their ith birthday in
the hypothetical case presented above). Because females in birth-flow pop-
ulations do not reproduce on their birthdays, it is less obvious in this case
which animals should be included in the denominator.

For the Amboseli birth-flow model, we included four classes of females
in the denominator for m;: (1) females that survived through the ith age class
without giving birth in that age class, (2) females that survived through the
ith age class and gave birth in that age class, (3) females that gave birth in the
ith age class and then died without surviving through the entire age class,
and (4) females that gave birth in the ith age class and then were censored
before their fate was known (i.e., on 31 December 1999, the last census date
we included in the analysis, these females had produced an infant and were
still alive in the age class). Females that were censored without giving birth
in the ith age class might eventually contribute to the birth rate in that age
class, but we deemed it incorrect to include them in the denominator of m;
if they had not yet done so. For instance, in Amboseli, three female offspring
were born to females in the nineteenth age class, and ten females either gave
birth in that age class or survived childless through it, yielding a value of
my = 3/10, or 0.30 (table 4.2).

Fertility in birth-flow models may be estimated as

m; + Pim.,

F = 1(0.5)(——*“‘2—)

(Caswell 2001). This formula reflects the fact that in forming age classes
from a continuous age distribution, we have given up all knowledge of age
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within each age class. Thus, to account for fertility over the entire projection
interval, we must take into account the fact that some reproductive females
in age class i will transition to age class i + 1 with probability P.. Further,
their offspring may be produced at any time during the projection interval,
and must survive for varying lengths of time to be included in the next cen-
sus; on average, they must survive half the projection interval. Thus, birth-
flow fertilities depend on an estimate of /(0.5) as well as estimates of m,.
1(0.5) may be estimated directly from the continuous data or by interpola-
tion from the values of /(0) and /(1) as follows (Caswell 2001, chap. 2):

10.5) = 1(0)VI(1).

We recommend that those interested in employing birth-flow estimates of
survival and fertility read Caswell (2001, chap. 2) for a full description of the
logic behind them.

Female Baboons in Amboseli Modeled as a Birth-Pulse Population
In order to explore the differences between modeling a continuously breed-
ing population as a birth-pulse population and modeling it as a birth-flow
population, we developed a birth-pulse model for the Amboseli females, as-
suming postbreeding censuses.

Birth-pulse survivals were taken directly from the hazard rate, P, =
(1 — H,), as described for the hypothetical population in table 4.1. Similarly,
we estimated birth-pulse fertility, F, as for the hypothetical population in
table 4.1, as

F, = Pm,

We estimated m; in the same manner for the birth-pulse model as for the
birth-flow model.

Our resulting birth-pulse estimates of survival and fertility for the Am-
boseli population are presented in table 4.2 for easy comparison with the
birth-flow estimates. Birth-flow estimates of vital rates show less variation
over age classes, which reflects the fact that they are like moving averages.
That is, in the birth-flow model, the vital rates for each age class include con-
tributions from the birth rate and survivorship estimates of previous and
successive age classes.

Survival and Fertility for Males

Survival and fertility calculations for male baboons (and males of many
mammal species) are less straightforward than those for females. Survival
estimates are complicated by the facts that males disperse from their natal
group and that some dispersing animals have unknown fates, so that the du-
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ration of their lives is uncertain. (In species with female dispersal, this prob-
lem will apply to females rather than, or in addition to, males, but the prin-
ciples are the same.) Fertility estimates are complicated by the difficulty of
establishing paternity. Here we present methods for estimating both survival
and fertility for males. Using these methods, we constructed a birth-flow
model for male baboons in Amboseli so that we could compare its output to
that of the female model.

Male survival. In the case of baboon males, we estimated P, for the predis-
persal age classes (1-6) in the same manner as for females (Lable 4.3). We
estimated survival after the age of dispersal by examining the age distribu-
tion. The age distribution gives exact measures of survival from one age
class to the next, assuming (1) that the population produces and receives mi-
grants at the same rates, (2) that if the population includes age-biased
groups (such as all-male bands in which old or juvenile males are overrep-
resented), such groups are included in the census in proportion to their rep-
resentation in the population, and (3) that the population is at equilibrium
and is neither growing nor shrinking. If these assumptions are met, then any
drop in numbers from one age class to the next will represent mortality in a
stable population. In a growing population, however, the age distribution
will underestimate survival. That is, in a growing population, the drop in
numbers between age class 1 and age class 2 will reflect not only mortality
from age class 1 to 2, but also the fact that the cohort represented by age
class 1 was larger to begin with than that represented by age class 2. Before
equilibrium is reached, population growth will be reflected in the age distri-
bution at successive time periods as a wave that is moving through the pop-
ulation from younger to older age classes over time. Similarly, in a declining
population, the age distribution will overestimate survival.

Our analysis of female baboons suggested that the population in Am-
boseli was growing. Consequently, when we constructed survival estimates
for males based on their age distribution, we adjusted those estimates by
examining the relationship between age distribution and survival for fe-
males. We reasoned that the female and male populations were growing at
the same rate and, because both age distribution and survival were known
exactly for females, that the female data would provide us with a measure
of the extent to which the age distribution overestimated mortality. In par-
ticular, we regressed observed female survival (/,) on the observed female
age distribution and used the slope and intercept of the resulting line as a
correction factor for our male survival estimates (fig. 4.6, table 4.3). We
did not employ this correction for the oldest age classes (16-20), as both
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FiG. 4.6. Relationship between survivorship, /(i), and age
distribution, a;, for wild-foraging female baboons in
Amboseli. The x-axis represents the relative age distribu-
tion, normalized to 1.0 for age class 1. In the ideal case

of an equilibrium population with A = 1, I(i) = a; (dashed
line). In Amboseli, the observed relationship between I(i)
and g, (represented by the solid circles) is described by the
solid line I(i) = 0.1227 + (1.012)(a)).

sample sizes and survival in those age classes were low for both males and
females; thus, this detailed correction was unlikely to improve those esti-
mates very much.

This procedure for estimating survival may be employed for either age-
based or stage-based models as long as animals progress from one class to
the next sequentially (e.g., the method would not work for red-cockaded
woodpeckers, where animals in a given class may move to or come from a
number of other classes). In either case, accurate assignraent to age or stage
classes is critical. In the case of Amboseli males, our sample included 218
natal males with known birth dates. Of 114 immigrant males, 78 were as-
signed ages based on an estimation process developed for the Amboseli
population (see Alberts and Altmann 1995 for details); 36 males with un-
assigned ages were excluded from the analysis.

Male birth rates. For males, some approximation to birth rate must be iden-
tified. Among Amboseli males, behavioral observations of mate guarding
(consortships) correspond well to genetic paternity assignments (Altmann
et al. 1996). Therefore, we used observational measures of mating success
to approximate birth rates. We measured the proportion of available fe-
male consort hours obtained by males of each age class, then distributed live
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births of male newborns (n = 194) across those age classes accordingly.
Birth rates, m;, Were then calculated as the number of live male births per
age class divided by the total number of male-years per age class (table 4.3).
Fertility, F,, was calculated from P; and m; as a birth-flow estimate, in the
manner described for females.

Model Output

Here we focus on a subset of four results yielded by matrix models (see
Caswell 2001 for a complete discussion). These results were all obtained
from fairly straightforward manipulations of the matrix, which can be ac-
complished using computational programs such as Mathematica (Shuchat
and Shultz 2000), Maple (Kamerich 1999), or Matlab (Pratap 1998). In ap-
pendix 4.2 we present a Matlab program that calculates these parameters.

Population Growth Rate

Population growth rate, A, is the dominant eigenvalue of the demographic
matrix (see Caswell 2001, appendix A, for a clear description of eigenvalues
and eigenvectors). It is a direct measure of the rate at which the popula-
tion is growing or shrinking, given the set of vital rates used in the model.
Hence it is important for assessing any population deemed in need of man-
agement, and it is a key result for estimating the viability of threatened or
endangered populations. A also represents the mean fitness of a population
(Lande 1982a; McDonald and Caswell 1993; Caswell 2001), and as such is
the means by which alternative phenotypes (alternative sets of vital rates)
are judged vis-a-vis the likelihood that they will spread in the population
once introduced (for an excellent comparison of various measures of popu-
lation increase and fitness, including A, see Stearns 1992, chap. 2).

Values of A for the hypothetical population shown in table 4.1, as well
as for the birth-flow and birth-pulse models for Amboseli, are shown in
table 4.4. As noted earlier, separate models for males and females in a popu-
lation should yield roughly equivalent values of A unless one sex is increas-
ing in frequency relative to the other. In the case of the wild-foraging Am-
boseli baboons, the female model yields A = 1.039 and the male model
yields A = 1.036; therefore, the population is growing. The two models pro-
duce remarkably close estimates of A given the challenges associated with
estimating male fertility and survival.

Stable Age Distribution
A striking property of most populations is that if age- or stage-specific mor-
tality and fertility schedules are constant from one generation to the next,
cach population will converge on its own characteristic and unchanging age
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Table 4.4 Values of \ for the models presented
in this chapter

Model” A
Hypothetical birth-pulse monkeys 0.914
Amboseli baboon females, birth-flow _..1039
Amboseli baboon females, birth-pulse 1.034
Amboseli baboon males, birth-flow 1.036

“Amboseli baboon models are for wild-foraging animals only.

(or stage) distribution (Stearns 1992, chap. 2; Charlesworth 1994, chap. 1).
This stable age distribution is described by the right dominant eigenvector
of the matrix (Caswell 2001, appendix A) and is a direct consequence of the
population’s vital rates. The population will converge on a stable age distri-
bution regardless of its initial age distribution and regardless of its value of
A. The meaning of a stable age distribution is that the proportional repre-
sentation of age classes remains the same as the population grows or
shrinks. In most natural populations, both stochastic and deterministic pro-
cesses result in vital rates changing over time, so that populations rarely if
ever reach stable age distributions. Nonetheless, populations that experi-
ence relative stability will converge on a stable age distribution.

The Amboseli baboon population exhibits a sex difference in its stable
age distributions (fig. 4.7), such that a larger proportion of males are in
the younger age classes, and a smaller proportion in the older ones, than is
the case for females. This difference reflects the generally higher mortality
rates of males as compared with females, a typical pattern for many primates
and, indeed, for many animals, including humans (Shapiro, Schlesinger, and
Nesbitt 1968), red deer (Clutton-Brock, Albon, and Guinness 1988), lions
(Packer et al. 1988), and Belding’s ground squirrels (Sherman and Morton
1984; see also discussions in Clutton-Brock, Albon, and Guinness 1985;
Trivers 1985, chap. 12).

The sex difference in age distributions for the Amboseli baboons has
some potentially interesting behavioral implications. At any one time, juve-
nile and infant males will have fewer adult role models than will juvenile fe-
males (35% of males are adults, 53% of females are adults). However, be-
cause secondary dispersal results in frequent changes in the identities of the
adult males in a group, young males may over time have a larger set of role
models, as well as ones that come from more diverse backgrounds, than fe-
males do (see Pereira 1988b for a discussion of the importance of same-sex
role models in the development of sex-typical behavior in nonhuman pri-
mates). Differences in age cohort sizes within each sex also have implica-
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tions for behavior. For instance, the fact that each cohort shrinks as it ages
means that in species such as baboons, in which age cohorts are likely to be
paternal sibships (Altmann 1979; Altmann et al. 1996; Smith 2000), older fe-
males will have fewer paternal relatives with which to interact than younger
females. The consequences of this difference for decisions involving agonis-
tic support, grooming, and patterns of social group fission are just beginning
to be explored (Smith 2000).

Reproductive Value

At any given time, the individuals in a population differ in the extent to
which they will contribute to future population growth. Their expected con-
tribution depends on the age or stage class they currently occupy, their
expected changes in fertility as they move between classes, and on the prob-
ability that they will survive to reproduce again. This class-dependent ex-
pected contribution to future generations is known as reproductive value, a
concept first developed by R. A. Fisher (1930; see also Stearns 1992, chap. 2;
Charlesworth 1994, chap. 1; Caswell 2001, chap. 4), and is defined by the left
dominant eigenvector of the demographic matrix (see Caswell 2001, appen-
dix A). Reproductive value is usually scaled to the value of the first class (so
that the reproductive value of the first class is 1). With each successive in-
terval that a young animal survives, its likelihood of reproducing increases;
hence its reproductive value typically increases steadily from birth until
near the age of first reproduction. Its reproductive value then drops because
the expected number of future young declines as the animal ages. The rate
at which reproductive value declines reflects the rates of adult mortality and
reproductive senescence, a finding that helps to develop our intuition that
selection events occurring late in life have relatively little effect on overall

fitness (see fig. 4.8 for reproductive values for Amboseli baboons).
In primate studies, reproductive value has figured prominently in mod-
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IR FiG. 4.8. Reproductive values for wild-
foraging female and male baboons in
Amboseli.

Reproductive value

Age class

els of, and debates about, the evolution of dominance patterns within ma-
trilines (e.g., Hrdy and Hrdy 1976; Chapais and Schulman 1980; Schulman
and Chapais 1980; Horrocks and Hunte 1983). The general argument has
been that the reproductive value of each female in the family will have con-
sequences for the relative rank that her kin “allow” her to occupy, because
of her effects of their inclusive fitness. Thus, for instance, Schulman and
Chapais (1980) propose that when rank is contested between sisters, moth-
ers will support the daughter with the highest reproductive value (see also
the critique of this model by Horrocks and Hunte 1983). Recent work with
the Amboseli baboons (Combes and Altmann 2001) supports a reproduc-
tive value model for the pattern of rank reversal between mothers and
daughters. Reproductive value has other potential implications for the evo-
lution of behavior (see, e.g., discussion and cautions in Charlesworth 1994,
chap. S, pp. 237-239).

Perturbation Analysis: Sensitivities, Elasticities, and Other
Simulated Life History Changes
One of the most powerful and useful applications of the matrix model is per-
turbation analysis. Each vital rate in a matrix model has a characteristic
sensitivity, which is an estimate of the extent to which A changes as that vital
rate undergoes small changes (and while other vital rates are held constant)
(fig. 4.9).

The sensitivity of a matrix element, s, is defined as

dA

Sy = a
Thus, a vital rate with a high fitness sensitivity is one for which changes re-
sult in a relatively large change in A. The changes are measured from an ini-
tial starting value for that vital rate, which is the specific mean value a;;in the
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FiG. 4.9. Two vital rates from Figure 4.1 and their
hypothetical effect on A. A, (denoted by the dotted
line) is the observed A in the population. Sensitivities
are defined by the slope of the lines tangent to the
curves at A,. Note that in neither case is the relation-
ship between a and A linear; in general, there is no
reason to expect it to be so.

matrix; a different mean value, derived from a different population or from
different time periods for the same population, could have a different sensi-
tivity if the effects on A of one or more vital rates are not constant through-
out the range of that vital rate.

Sensitivity can be calculated as

where v, is the reproductive value of class i and w; is the proportional rep-
resentation of class i in the population. Note that the calculation of sensi-
tivity is based on changes in fitness in response to infinitesimally small, ab-
solute changes in a;; that are unspecified in magnitude. Sensitivities answer
the question, if we perturb each matrix element by some small amount, what
is the consequent change in A? In other words, what is the slope of each re-
lationship between A and a;? We cannot extrapolate from the sensitivity
analysis to predict the effect of large changes in a; unless we assume that the
relationship between A and a;; is (at least locally) linear.

A related, alternative measure of the effect on A of matrix perturbations
is elasticity. Elasticities are standardized sensitivities that measure the ef-
fects of proportional changes in vital rates. That is, elasticities report the ef-
fect of perturbations that are all of the same relative (and not absolute)
magnitude. Elasticities answer the question, if we perturb each matrix ele-
ment by the same relative amount (e.g., 0.05%), what are the consequent
changes in A? Elasticities, e;, are defined and calculated as

dln(A) a8y
==

€ = dln(a;;)
The elasticities of a projection matrix sum to 1 over the entire matrix and
can be thought of as the relative contributions of each element a;; to A. An
important difference between sensitivities and elasticities is that matrix ele-
ments for which a;; = 0 (such as the fertility of the newborn age class) can
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have nonzero sensitivities, but all matrix elements for which a;; = 0 will have
e; = 0.

Perturbation analyses for wild-foraging female and male baboons in
Amboseli indicated that A is much more sensitive to changes in survival than
to changes in fertility; fertility represents just 9% of the total elasticity in
the life history for both males and females (fig. 4.10). Prereproductive sur-
vival, in contrast, represents 37% of the total elasticity in the female matrix
and 62% of the total elasticity in the male matrix. This difference between
males and females results entirely from the difference in age at first repro-
duction; elasticity values for survival in each of the first four age classes
are nearly identical for the two sexes. In comparing a range of social verte-
brates, McDonald (1993) showed that survival commonly shows higher elas-
ticity than does fertility, particularly in long-lived species. McDonald also
discussed the significance of sex differences in elasticity patterns, noting that
such differences may be the consequence of sexual selection and thus may
amount to sexually selected characteristics.

Perturbation analysis may also involve direct manipulation of matrix
entries. The advantage of direct manipulation is that one is not confined to
the infinitesimal changes described by the partial derivatives. For instance,

0.10+ Fi1G. 4.10. Elasticity in survival
0.084 (solid line) and in fertility
(dashed line) as a function of age
2> 0067 class for (A) female baboons and
o . .
Z 004 (B) male baboons in Amboseli.
o
0.024
0.00-;
0.107
0.08-
2> 0.06
‘é 0.04
5
0.024
0.00

26

Age class
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if a species such as the savanna baboon experiences infant survival values in
natural habitats that range from 0.5 to 0.9, elasticity analysis alone will not
capture the consequences of this range of values. Instead, matrix entries for
the infant age class can be directly manipulated so that the effect of the
whole natural range of infant survival on A can be examined. Mills, Doak,
and Wisdom (1999) used this method of manual changes in matrix entries in
a very useful discussion of the assumptions and limitations of elasticity
analysis.

Perturbation analysis is increasingly being used to assess management
strategies for threatened populations. Heppell, Crowder, and Crouse (1996)
evaluated the practice of “head-starting” young turtles, in which hatchlings
are reared in captivity and then released after the age of high mortality in
the wild. The authors concluded that survival elasticity is much lower for
hatchlings than-for adults, so that headstarting is of little or no value with-
out efforts to increase adult survival as well. Crooks, Sanjayan, and Doak
(1998) reached a similar conclusion for cheetahs, in which high cub mortal-
ity has been cited as a major factor limiting wild populations. In contrast to
the analyses for these threatened populations, our elasticity analyses of the
Amboseli baboon models indicated that throughout the range of survival
values seen in natural populations, juvenile survival has a much greater ef-
fect on A'than either adult survival or fertility (fig. 4.10) (S. C. Alberts and
J. Altmann, unpub.). Moreover, this is the case whether we consider starting
rates that would result in a declining (A < 1.00), stationary (A = 1.00), or in-
creasing (A > 1.00) population.

Whether a vital rate changes in response to an ecological change, or in
response to selection, will depend on the potential plasticity of that vital rate
for a given species. From an evolutionary point of view, the great utility and
appeal of elasticity is that it provides a measure of the relative strength of
selection on vital rates (McDonald and Caswell 1993; Benton and Grant
1999). Whether a given vital rate responds to selection will depend, of
course, on the presence of additive genetic variance for the vital rate and on
genetic covariance between rates. Elasticities alone will not predict the re-
sponse to selection, but will estimate the strength of selection on various
rates.

Limitations of the Model

In spite of their power and utility, matrix models contain several important
assumptions and limitations. Two key assumptions are density indepen-
dence and time invariance of vital rates. Many populations violate these
assumptions. However, methods are available for modifying the models to
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relax these assumptions or to test the robustness of population projections
when these assumptions are violated (e.g., van Groenendael, de Kroon, and
Caswell 1988; Benton, Grant, and Clutton-Brock 1995; Benton and Grant
1996, 1999; Grant and Benton 2000; Wisdom, Mills, and Doak 2000). For in-
stance, Benton and Grant (1996, 1999) report that while elasticity analysis
is fairly robust to the assumption of time invariance in some circumstances,
this is not usually true for short-lived organisms or when variance in vi-
tal rates is very high. Wisdom, Mills, and Doak (2000) have developed a
probability-based resampling method that addresses this problem by incor-
porating variance in vital rates into estimates of elasticities (Benton and
Grant 1999; Wisdom, Mills, and Doak 2000).

An increasingly common method of exploring the effect of variance in
vital rates is the use of stochastic models, which investigate the effects of
environmental variance, demographic variance, or both (Armbruster and
Lande 1993; Gross et al. 1998; Kendall 1998). Stochastic models may reveal
rather different population dynamics than deterministic models of the sort
explored here. They are important tools where variable environments re-
sult in widely varying vital rates or where populations are small, so that
demographic stochasticity becomes an issue in population dynamics (Cas-
well 2001).

Another important limitation of matrix models is that they do not gen-
erally incorporate covariance among vital rates; sensitivities and elasticities
are explicitly calculated as partial derivatives of single matrix elements,
holding all other elements constant. Empirical data have shown, however,
that covariance among life history traits exists (e.g., Stearns 1989b; Benton,
Grant, and Clutton-Brock 1995). In primates, for example, infant survival
sometimes affects the mother’s future reproduction (e.g., Altmann, Alt-
mann, and Hausfater 1978 for baboons; Tanaka, Tokuda, and Kotera 1970
for macaques), and reproduction may increase maternal mortality (e.g., Alt-
mann 1980 for baboons; Westendorp and Kirkwood 1998 for humans). Van
Tienderen (1995) provides an excellent introduction to the use of integrated
sensitivities, which incorporate covariance among vital rates in the calcula-
tion of sensitivities. They are calculated as the ordinary (not partial) deriv-
atives of A on a matrix entry, as follows:

A _n, gni

da; da; {5ida; da;

Van Tienderen discusses the problems of estimating covariances among ma-
trix entries and provides examples of such covariances and of integrated
sensitivities using both animal and plant taxa.
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An additional caution in interpreting elasticities is that, because they
are measures of how A changes with infinitesimal changes in a vital rate, they
may not accurately predict the consequences of large perturbations in vi-
tal rates (Benton and Grant 1999; Mills, Doak, and Wisdom 1999), such
as might occur with a major environmental change or the introduction of
human-associated food enhancement. This issue is of particular importance
when environments are highly variable, so that vital rates change greatly
from one generation to the next, or when management techniques for
threatened populations are likely to result in large changes in vital rates.
Mills, Doak, and Wisdom (1999) show that large perturbations may actually
cause changes in A that are of the opposite sign from those predicted by elas-
ticities, particularly when several rates are simultaneously changed by dif-
ferent amounts. They caution that manual perturbations of the matrix (in
which matrix elements are modified directly and A sensitivities are recalcu-
lated) are an important supplement to standard sensitivity analysis.

Summary and Conclusions: Why Employ a Matrix Model?

There is wide general consensus that matrix models are the best approach
to understanding population dynamics, and this makes them the method of
choice for researchers working on endangered, threatened, cr rare species
or species that require management of any sort. However, other methods
are available for examining selection on life history components (Arnold
and Wade 1984a,b; Brown 1988). Matrix models have some advantages over
these methods, as well as some limitations. (The methods of Arnold and
Wade and Brown also have advantages and disadvantages relative to each
other that will not be discussed here; the reader is referred to Brown 1988
for this discussion.)

First, for researchers working on primates or any other long-lived spe-
cies, the multivariate methods of Arnold and Wade and Brown for estimat-
ing fitness and the strength of selection require extensive longitudinal data
on individuals. Matrix methods can certainly utilize such detailed long-term
data, but they require at a minimum careful, repeated yearly census data
over some period of time, with individuals in the census accurately assigned
to age classes. Indeed, in some circumstances, matrix methods do not re-
quire identification and tracking of individuals from year to year. If indi-
viduals can be accurately assigned to age classes so that age structure and
age-specific fertility can be estimated, then cross-sectional data without in-
dividual identification is sufficient to construct a matrix model. The difficulty
here is that without some information on known individuals, mortality can
be estimated only by examining the age distribution, which may over- or
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underestimate survival and thus inflate or deflate A respectively. Moreover,
one will not generally be able to analyze covariance among traits in the ab-
sence of information on individuals.

Second, the formal structure of matrix models makes it difficult to

——overlook any parameters; the survival and fertility of each recognized age
or stage must be included. This is not true of the multivariate methods, in
which the researcher chooses a set of fitness components presumed to en-
compass total fitness. For instance, in the male bullfrog example developed
by Arnold and Wade (1984b), total fitness is calculated as the product of
number of mates, zygotes per mate, and hatchlings per zygote. Survival from
hatchling to adult and adult survival are missing as components of fitness.
Thus, the structure of the model is determined by the researcher’s a priori
beliefs about which phases of the life cycle are important. Such assumptions
will limit the capacity of the model to capture important life history variance
and may result in misestimations of the strength of selection. For instance,
in their male bullfrog example, Arnold and Wade demonstrate strong se-
lection for large body size, but this finding is difficult to interpret without
knowing whether large size also affects adult survival, which is excluded
from the model.

Age-specific changes in fertility and survival are also largely ignored by
the multivariate methods. Brown’s approach, in particular, designed to over-
come the limitations of the Arnold and Wade approach (Brown 1988), ex-
plicitly averages fitness components over the entire life span and disregards
changes with age. The Arnold and Wade approach can incorporate age-
specific changes by separating the fertility component of fitness into several
age-specific fertilities, but this is not built into the approach, and again de-
pends on whether the researcher decides a priori that such changes may be
important. Matrix models, by forcing us to examine the entire life cycle and
to explicate age-specific changes in survival and fertility, draw our attention
to age-specific changes in fitness, which theory indicates are of great impor-
tance in the evolution of life histories (Roff 1992; Stearns 1992; Charles-
worth 1994).

Matrix models also make it relatively easy to examine the effect of vari-
ation that is not directly observed in the study population. The multivariate
methods are confined to the variation directly observed in the study popu-
lation, while matrix methods allow researchers to explore the entire range
of variation in life history parameters seen in the species through perturba-
tion analysis. Thus, while both methods identify selection pressures, matrix
methods allow more explicit analysis of the effect on fitness of varying life
history parameters.
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Matrix models also have significant limitations, some of which are de-
scribed above. An important limitation not yet mentioned is that matrix
models in themselves provide no clues about which phenotypic traits influ-
ence vital rates. Thus, a matrix model that paralleled the analysis of male
bullfrogs developed by Arnold and Wade (1984b) would identify the phases
of the life cycle under the strongest selection pressure (for example, adult
fertility or zygote survival), but would not estimate the effects of male body
size on these critical life cycle phases, or even identify male body size as an
important trait. Similarly, perturbation analysis of the baboon matrix model
indicates that infant and juvenile survival are under strong selection, but
does not identify factors that contribute to variance in infant and juvenile
survival.

However, matrix methods are excellent guides for subsequent analyses
of sources of vazriance in fitness. Analyses of the sort exemplified in Pereira
and Leigh (chap. 7), Godfrey et al. (chap. 8), and Ganzhorn et al. (chap. 6;
all this volume), which describe detailed examinations of the causes and
consequences of variation in particular life history stages, would be espe-
cially powerful if informed by a matrix analysis that identified critical stages
of the life history. Another approach would be to follow a matrix analysis
with a path analysis or multiple regression. Van Tienderen (2000) proposes
a hierarchical method that incorporates matrix models and elasticity analy-
sis with multivariate selection analysis of important phenotypic traits. He
also provides an excellent discussion and comparison of the parameters
used in multivariate models versus those used in matrix models (van Tien-
deren 2000). The two approaches are complementary and together offer a
richness and completeness that is not possible with either alone.

Matrix models have multiple applications that make them flexible and
useful tools for asking both evolutionary and ecological questions. They can
provide insights into management strategies for threatened populations,
identify life history parameters that are under selection within a given spe-
cies, or even facilitate interspecific comparisons that may shed light on long-
standing problems in life history theory. Their formal structure ensures that
all life history stages of the animal are included in the analysis, so that they
help to develop and correct our intuition about the biology of our study an-
imals. The limitations of matrix models are increasingly being resolved, so
that density dependence, variability over time, and covariance among life
history parameters can be incorporated into the models. Especially in com-
bination with other, more traditional techniques for identifying the impor-
tance of phenotypic variance, they provide an outstanding tool for primate
life history analysis.
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Appendix 4.1

Reproductive Rate Terminology

The terms “fecundity” and “fertility” are used in a variety of ways in the literature.
When developing a model and researching existing models, it is important to iden-
tify the meaning that each author attributes to these terms, rather than simply as-
suming a standard usage. For instance, the term “fecundity” is used to describe the
top row matrix elements (F;) by some authors (e.g., van Groenendael, de Kroon, and
Caswell 1988; Heppell, Walters, and Crowder 1994; Pfister 1998), while others use
the term “fertility” for F; (e.g., McDonald 1993; Crooks, Sanjayan, and Doak 1998).
Following Jenkins (1988), McDonald and Caswell (1993), and Caswell (2001), we
have used the term “fertility” to indicate the values (F;) in the top row of the projec-
tion matrix: the expected number of newborns that will have been produced by time
(t + 1) per individual in age class i at time ¢. In this terminology, “fertility” refers to
the realized reproductive rate (m,P;), while “fecundity” refers either to the unreal-
ized maximum potential reproductive output (Caswell 2001, chap. 2) or to the un-
corrected birth function, m; (Jenkins 1988).

Similarly, various terms have been used to denote m; We have used the term
“birth rate,” but others may use the terms “natality” (e.g., Sade et al. 1976), “fertil-
ity rate” (e.g., McDonald and Caswell 1993), or “fecundity” (e.g., Jenkins 1988).
Again, rather than assuming a standard usage, the meaning implied by the author
must be identified. :

Appendix 4.2

Matlab Program for Calculating Eigenvectors and Eigenvalues

This program employs a birth-pulse model to find the stable population growth rate
(A), stable age distribution, age-specific reproductive values, and various elasticity
and sensitivity values for an age-structured population based on survival and fecun-
dity values. This program was written in Matlab version 5.3.

STEP 1: Create a Leslie matrix with survival and fecundity values. First we create
two vectors, P (which contains survival values) and F (which contains fecundity val-
ues). To do so, age-specific survival and birth rate values should be plugged into the
vectors below, with values separated by commas.

Insert age-specific survival values, separated by commas, between brackets in
command.

P=[];
Insert age-specific birth rates, separated by commas, between brackets in command.

B=[}L .
F=B."P;
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The survival and fecundity values are then plugged into the appropriate slots in an
(n*n) zero matrix to create the Leslie matrix, M. That is, the n — 1 entries in the sur-
vival vector are plugged into the subdiagonal, and the n entries in the fecundity vec-
tor are plugged into the first row.

dimensions=size(F);

n=dimensions(2);

M(n,n)=0;

for r=[2:n]

M(r,r=1)=P(r-1);
end
for c=[1:n]
M(1,c)=F(c);

end
The Leslie matrix is then displayed.

fprintf(‘Leslie Matrix:’) M
STEP 2: Find the dominant and largest subdominant eigenvalues and calculate the
damping ratio.
First we create a matrix, Right_Eigenvectors, of the right eigenvectors of M and a di-
agonal matrix, Values, of the eigenvalues of M. From Values we then create a vector
Eigenvalues, which lists the eigenvalues of M.

[Right_Eigenvectors,Values] = eig(M);
Eigenvalues=eig(M);
The dominant eigenvalue, lambda, is then found and printed by selecting the maxi-

mum value from Eigenvalues. Note that the dominant eigenvalue of a Leslie matrix
will always be both positive and real.

fprintf(‘Dominant Eigenvalue:’)
lambda=max(Eigenvalues)

Next, a vector Magnitudes is created that lists the absolute values of each of the
eigenvalues. The entry occupied by the dominant eigenvalue is then set to zero.

Magnitudes = abs(Eigenvalues);
for j=[1:n]
it Magnitudes(j)==lambda
dominant=j;
Magnitudes(j)=0;
end
end

The magnitude of the largest subdominant eigenvalue, abs_lambda2, is then ex-
tracted from Magnitudes.
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fprintf(‘Magnitude of Largest Subdominant Eigenvalue:’)
abs_lambda2=max(Magnitudes)

STEP 3: Find the stable age distribution. First the right dominant eigenvector, RDE,
is extracted from Right_Eigenvectors, and the sum of its entries, sadnormalizer, is
calculated in order to normalize the stable age distribution.

for j=[1:n]
RDE(j)=Right_Eigenvectors(j,dominant);

end

sadnormalizer=sum(RDE);

Then the normalized stable age distribution is calculated from RDE and sadnor-
malizer.

Stable_Age_Distribution=RDE/sadnormalizer

STEP 4: Find the age-specific reproductive values. First, we create a matrix, Left_
Eigenvectors, of left eigenvectors. (For an explanation of the methodology used, see
Caswell 2001, pp. 92-94.)

Left_Eigenvectors=conj(inv(Right_Eigenvectors)) ;

We then extract the left dominant eigenvector, LDE, from Left_Eigenvectors. We
also extract the reproductive value of the first age class, rvl, from LDE in order to
scale the reproductive values.

for j=[1:n}

LDE(j)=Left_Eigenvectors(j,dominant);

end

rvi=LDE(1);
The reproductive values are then scaled to the reproductive value of the first age
class, yielding the vector Reproductive_Values, which lists the relative reproductive
values for each age class.

Reproductive_Values=real(LDE/rv1)

STEP 5: Calculate sensitivities for all entries of M. The sensitivity of a Leslie matrix
entry a, is the partial derivative of the population growth rate, A, with respect to a;;.
(For further details, see Caswell 2001, pp. 206-211.)

Sensitivities(n,n)=0;
for i=[1:n]
for j=[1:n}
Sensitivities(i,j) = ((Reproductive_Values(i)*Stable_Age_Distribution(j))/
sum(Stable_Age_Distribution.*Reproductive_Values));
end
end
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fprintf(‘Dominant Eigenvalue’)

Sensitivities
STEP 6: Calculate elasticities for all entries of M. The elasticity of a Leslie matrix
entry a;;is a scaled sensitivity value, giving the proportional change in the population
growth rate, A, that results from a proportional change in a;. (For further details, see
Caswell 2001, p. 132.)

Elasticities(n,n)=0;
for i=[1:n]
for j=[1:n]
Elasticities(i,j)=((M(i,j)* Sensitivities(i,j))/ lambda);
end
end
fprintf(‘Dominant Eigenvalue’)
Elasticities





