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A simple expression for a lower bound of Fisher information is derived
for a network of recurrently connected spiking neurons that have been
driven to a noise-perturbed steady state. We call this lower bound linear
Fisher information, as it corresponds to the Fisher information that can be
recovered by a locally optimal linear estimator. Unlike recent similar cal-
culations, the approach used here includes the effects of nonlinear gain
functions and correlated input noise and yields a surprisingly simple
and intuitive expression that offers substantial insight into the sources
of information degradation across successive layers of a neural network.
Here, this expression is used to (1) compute the optimal (i.e., information-
maximizing) firing rate of a neuron, (2) demonstrate why sharpening tun-
ing curves by either thresholding or the action of recurrent connectivity
is generally a bad idea, (3) show how a single cortical expansion is suffi-
cient to instantiate a redundant population code that can propagate across
multiple cortical layers with minimal information loss, and (4) show that
optimal recurrent connectivity strongly depends on the covariance struc-
ture of the inputs to the network.

1 Introduction

The brain encodes many variables, such as the color of objects and the
direction of arm movements, through the concerted activity of popula-
tions of noisy spiking neurons, a type of code known as population codes.
Understanding these population codes is a key step toward developing
neural theories of computation, learning, and information transmission.
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A natural measure for characterizing the information content of a code
when dealing with continuous variables is Fisher information (Abbott &
Dayan, 1999). Fisher information is inversely proportional to the smallest
change in the encoded stimulus that can be discriminated from the neu-
ronal responses. This measure can be used to explore how to optimize
population codes, that is, how to wire neural circuits to maximize Fisher
information.

In many population codes, the tuning curve of the neurons, that is, the
average response as a function of a real-valued stimulus (denoted s), follows
gaussian functions of s. Several studies have investigated how to optimize
the parameters of these tuning curves, such as the height and width, when
s is a scalar variable (Seung & Sompolinsky, 1993) as well as when s is
a multidimensional vector (Zhang & Sejnowski, 1999). These studies have
argued that for scalar s, the brain should use high-amplitude, narrow tuning
curves to optimize information transmission and that learning should seek
to reduce the width of the tuning curve as a way to improve behavioral
performance (Somers, Nelson, & Sur, 1995; Spitzer, Desimone, & Moran,
1988; Murray & Wojciulik, 2004; Schoups, Vogels, Qian, & Orban, 2001;
Teich & Qian, 2003).

This conclusion, however, was derived under the assumption that neu-
rons generate independent Poisson spike counts. This is a problem because
neurons in vivo are correlated (Zohary, Shadlen, & Newsome, 1994), and
correlations can have a significant impact on Fisher information (Abbott
& Dayan, 1999; Yoon & Sompolinsky, 1998; Sompolinsky, Yoon, Kang, &
Shamir, 2001; Wilke & Eurich, 2002; Wu, Nakahara, & Amari, 2001). These
researchers investigated the effects of correlations by considering a variety
of physiologically inspired parameterizations of covariance matrices, but
they did not consider how a network of spiking neurons might generate
these covariance structures. To address this issue, we need an expression
for Fisher information in a recurrently connected network of spiking neu-
rons. For scalar variables, such an expression has been recently derived by
Toyoizumi, Aihara, and Amari (2006), but only for a single layer of noisy
neurons driven by a noiseless or deterministic function of the stimuli of
interest. This is a serious limitation for two reasons. First, their approach
cannot be applied to a situation in which there is a layered architecture
and the quantity of interest is the information content of the final layer.
This is because although the first layer of noisy neurons might be driven
by a signal that is a deterministic function of the stimulus, the subsequent
layers are necessarily driven by a noise-corrupted version of that signal.
Second, stimulus-dependent, noiseless inputs convey an infinite amount
of Fisher information (assuming invertible transformations), while Fisher
information is necessarily finite in the nervous system. For instance, given
the image of a contour, it is not possible to know its orientation with infinite
precision if only because of noise in the physical world and the noise in
the photoreceptors. Indeed, one could argue that the quantity of interest
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here is information loss between two layers of cortex. When the input layer
is a deterministic function of the stimulus, as it is in the case worked out
by Toyoizumi et al. (2006), information loss is infinite. Thus, to model the
effects of finite input information and information loss between layers of
cortex, we require an expression for Fisher information in a network of
noisy neurons that is driven by a noisy input layer.

Here, we expand on previous work that estimated the second-order
statistics of spiking neural networks and derive a simple and intuitive ex-
pression for a lower bound on Fisher information in a network of spiking
neurons (more specifically, linear, nonlinear, Poisson neurons; see below)
that fire in response to noisy input spike trains with finite information
content. This lower bound corresponds to what we call linear Fisher infor-
mation, which is the fraction of Fisher information about a stimulus s that
can be recovered by a locally optimal linear estimator (i.e., the linear op-
eration on neural activity that can best discriminate between s and s + δs,
where δs is small). In practice, linear Fisher information has been found to
provide a tight bound on total Fisher information, in simulations (Seriès,
Latham, & Pouget, 2004) and in vivo (Averbeck, Latham, & Pouget, 2006).
Consequently, this expression provides a relevant and valuable tool for in-
vestigating fundamental questions regarding the computational properties
of rate-based population codes.

2 Linear, Nonlinear, Poisson Neurons

The spike response model (SRM) or linear-nonlinear-Poisson model (LNP)
of neural activity has become a popular model of spiking neural activ-
ity (Gerstner & Kistler, 2002), due in part to its computational simplicity,
the ease with which it can be unambiguously fit to neural data (Paninski,
2004), and its ability to approximate more complicated integrate-and-fire
neurons (Plesser & Gerstner, 2000). Here we consider an output layer of
such LNP neurons with lateral connections, receiving spike trains from
an input layer of spiking neurons. Each neuron in the input layer gener-
ates a spike train xi (t) = ∑

n δ(t − tn
i ), according to a stationary stochas-

tic process with stimulus-dependent mean, μx(s) = 〈x〉s and covariance
�xx(s, t − t′) = 〈(x(t) − μx(s))(x(t′) − μx(s))T〉s . Here 〈·〉s indicates an average
conditioned on the value of the stimulus of interest, s.

The state of each output neuron, indexed by the letter i , is characterized
by a membrane potential proxy ui (t) that is obtained by taking a weighted
linear combination of the spikes from neurons in the input layer, xj (t), and
spikes from the neurons in the output layer, yj (t):

ui (t) =
∑

j

wi jε ∗ yj (t) +
∑

j

mi jε ∗ xj (t), (2.1)
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where ε(t) gives the time course of the postsynaptic potential associated
with each spike, the ∗ indicates a convolution, and the matrices M and W
specify the feedforward and recurrent connectivity, respectively.

Spikes are then generated from an inhomogeneous Poisson process with
the rate given by ρi (t|t̂i ) = γ (t − t̂i )g(ui (t)). Here, the gain function, g(u),
is a monotonically increasing, nonnegative function; t̂i is the time of the
last spike of neuron i , so that γ (t − t̂) models the refractoriness of the neu-
ron (in this work, γ (t) is either a constant or given by γ = 1 − e−kt). We
use the notation yi (t) = ∑

n δ(t − tn
i ) to denote the spike train for output

neuron i and y(t) to refer to the vector of spike trains from all output
neurons.

3 Linear Fisher Information

We define linear Fisher information as Iy(s) = μ′
y(s) · �yy

−1(s)μ′
y(s), where

μy(s) and �yy(s) are the stimulus-dependent mean and covariance matrix
of y(t), and the notation (·) is meant to indicate a dot or inner product. This
corresponds to the part of Fisher information that can be inferred from the
variance of the locally optimal linear estimator of the stimulus (Seriès et al.,
2004) under the condition that the Cramér-Rao bound is attainable (Wu,
Amari, & Nakahara, 2002).

In general, Fisher information contains other terms in addition to the lin-
ear term. For instance, when p(y|s) is a multivariate gaussian distribution,
there is a second term, the so-called trace term, that reflects the information
content that results from a stimulus-dependent covariance matrix under
the gaussian assumption. In theory, this term can contain a large fraction
of the information, particularly when the covariance matrix depends on
the stimulus (Shamir & Sompolinsky, 2004). Nonetheless, we chose to fo-
cus on the linear term because it provides a tight bound on total Fisher
information in both simulations (Seriès et al., 2004) and in vivo (Averbeck
et al., 2006). Moreover, the trace term is applicable only when the stimulus-
conditioned population response is, in fact, gaussian distributed. In general,
this assumption of gaussianity may not hold and should be tested. Such a
test requires knowledge of the third, fourth, and possibly higher moments.
Unfortunately, a theory of correlations of neural networks is agnostic as to
moments higher than the second. Thus, such a theory can be used only to
estimate linear Fisher information.

This is easily observed by considering a computation of Fisher informa-
tion for an arbitrary member of the exponential family with sufficient statis-
tics T(y). In this case, p(y|s) = φ(y) exp(�(s) · T(y) − η(s)), so that Fisher
information is given by

IT (s) = d
ds

〈T〉s · �−1
TT (s)

d
ds

〈T〉s . (3.1)
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This equation indicates that explicit computation of Fisher information re-
quires knowledge of the covariance of the sufficient statistic, T(y). When
the sufficient statistic is linear in y (as is the case for a rate based neural
code), this expression yields linear Fisher information, and the first- and
second-order statistics (mean and covariance) of y are all that is needed
to compute Fisher information. In contrast, the computation of Fisher in-
formation expressed by a neural code that conveys information through
the presence or absence of coincident (or time-delayed coincident) spikes
requires a sufficient statistic, T(y), which is influenced by these coincident
spikes. An example of such a sufficient statistic would be a T(y) that spans
the space of quadratic functions of y. However, this computation requires
an estimate of the covariance of these quadratic elements of y, that is, an esti-
mate of the third and fourth moments of y. As such, a theory of correlations,
but not of higher-order statistics, is capable of yielding only an estimate of
information associated with a linear-sufficient statistic—T(y) = y.

4 Analysis

To compute linear Fisher information, we need an expression for the covari-
ance matrix in the output layer. The main difficulty in doing this comes from
the nonlinear activation function g(u). However, we can take advantage of
the fact that in an LNP network, the strength of interneuronal connectivity,
here characterized by M and W, is inversely proportional to the number
of neurons. Therefore, the variations in the membrane potential proxies,
ui (t), are also inversely proportional to the number of neurons, which im-
plies that they are small in large networks. We can therefore linearize the
activation function around its steady state, that is, apply linear response
theory (Risken & Frank, 1996) to approximate a linear transfer function be-
tween ui (t) and the associated spike train yi (t). This is a variation of the ap-
proach of Ginzburg and Sompolinsky (1994) and, more recently, Chacron,
Longtin, and Maler (2005). Specifically, we seek the function χi (t) such
that

yi (t) ≈ y0
i (t) + χi ∗ δui (t), (4.1)

where δui (t) = ui (t) − ūi (s) and y0
i (t) is the spike train obtained by driving

the neurons only with the stimulus-conditioned mean input: 〈g(u)|s〉. Here
the bracket notation, 〈g(u)|s〉, is intended to indicate a stimulus-conditioned
noise average of g(u). In principle, both of these quantities may depend on
time, but for simplicity, we assume stationary statistics. As a simple ex-
ample, consider an inhomogeneous Poisson process (with no refractory
period—γ (t − t̂) = 1) driven by a stochastically fluctuating membrane po-
tential proxy u with mean ū and variance σ 2

u and with a linear gain function
g. In this case, the mean drive and, hence, the rate of the unperturbed
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process y0(t) is just the average ḡ(ū, σ 2
u ) = 〈g(u)〉 = ū. Similarly, it is easy to

show that the output spike train, y(t), has variance ū + σ 2
u . From this we

can conclude that the linear transfer function χ takes on a constant value of
1. Although this example was limited to the consideration of spike counts,
a similar consideration of stationary temporal correlations yields the same
result in the linear case.

So far, we have assumed that the fluctuations in u are small, so that
g(u) can be approximated by a linear function (Ginzburg & Sompolinsky,
1994). Since large fluctuations in the membrane potential proxy have the
effect of smoothing the gain function, we can extend this approach to
large fluctuations in u by approximating g(u) with ḡ(ū, σ 2

u ) = 〈g(u)〉 and
Taylor-expanding this function about the mean drive instead. This has the
advantage of allowing neurons that are not driven above threshold by their
mean drive but respond due to the stochastic fluctuations to contribute to
the network activity and thus also to information content. In this case, an
inhomogeneous Poisson spiking neuron would produce an unperturbed
spike train, y0(t), with mean firing rate given by ḡ(ū, σ 2

u ), and χ would
again be constant but with value given by

ḡ′(ū, σ 2
u ) = d

dx
ḡ′(ū + x, σ 2

u ). (4.2)

When the refractory term is present, the procedure for estimating χ is
essentially the same. Indeed, because we seek a linear transfer function, it
is helpful to consider the χ estimation in the Fourier domain, henceforth
indicated by a χ̃(ω). In this domain, the estimation of χ̃(ω) is nothing more
than the estimation of the frequency response function of a neuron driven
by some noise-perturbed membrane potential proxy. This procedure can
be performed, numerically if necessary, for any nonlinearity in the gain
function or any refractory term (Chacron et al., 2005; Gerstner & Kistler,
2002). The procedure is straightforward: one can simply drive a neuron
with some mean input ū perturbed by white noise with variance σ 2

u to
obtain the statistics of y0(t). The frequency response function χ̃ (ω) can then
be obtained by adding to the drive a small frequency-dependent component
with frequency ω.

However, in order to make progress analytically, we at first neglect the
refractory term and later show numerically that for stationary input statis-
tics, the addition of a nontrivial refractory period seems to have no dis-
cernable effect on the estimation of information. Regardless, the procedure
we outlined can be used to obtain the linear transfer function of a single
neuron (i.e., the χ of equation 4.1) as a function of the mean and variance
of the drive of the neuron. This single-neuron linear transfer function can
then be used to compute the linear transfer function of an entire network.
This is the equivalent of computing matrices Ã(ω, s) and B̃(ω, s) in the
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equation

Ã(ω, s)(ỹ(ω, s) − μy(s)δ(ω)) = ỹ0(ω, s) − μy(s)δ(ω) + B̃(ω, s)(x̃(ω, s)

− μx(s)δ(ω)). (4.3)

Note that these are perturbation equations expressed in the Fourier domain
where terms of the form μy(s)δ(ω) and μx(s)δ(ω) arise from the removal of
the stationary means from x(t), y(t), and y0(t). Note also that this expression
neatly encapsulates the two sources of variability that drive the fluctuations
in y(t), namely, fluctuations that arise from the inputs to the network and
fluctuations that arise from the stochastic spiking represented by y0(t). In
order to compute the second-order statistics, all that remains now is to
identify Ã(ω, s) and B̃(ω, s) by comparing the perturbation equation above
with the Fourier transform of the linearized form of equation 2.1:

ỹi (ω) − μy,i (s)δ(ω) = ỹ0
i (ω) − μy,i (s)δ(ω)

+ χ̃i (ω, s)
∑

j

Wi j ε̃(ω)
(
ỹj (ω) − μy, j (s)δ(ω)

)

+ χ̃i (ω, s)
∑

j

Mi j ε̃(ω)
(
x̃ j (ω) − μx, j (s)δ(ω)

)
. (4.4)

This leads to a network transform function of the form

Ã(ω, s) = I − D̃(ω, s)W, (4.5)

B̃(ω, s) = D̃(ω, s)M, (4.6)

where diagonal matrix D̃ is defined by

D̃ii (ω, s) = χ̃i (ω, s)ε̃(ω). (4.7)

We note that in the absence of a refractory term, D̃ii becomes

D̃ii (ω, s) = ḡ′(ūi (s), σ 2
ui

(s))ε̃(ω), (4.8)

where the prime indicates a derivative with respect to the first argument of
g(ūi (s), σ 2

ui
(s)). The covariance of the output spike trains can then be related

to the covariance of the input spike trains, �̃xx(ω, s); the covariance of the
unperturbed spikes; and the network transfer function, Ã(ω, s). Finally,
since equation 4.3 linearly relates the perturbed output spikes to noisy
inputs, x, and the noisy unperturbed spike trains, y0, it is a simple matter
to relate the variability in output spikes to the variability in these two
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quantities. Straightforward matrix manipulation of equation 4.3 yields

�̃yy(ω, s) = Ã−1(ω, s)(G̃(ω, s)

+ D̃(ω, s)M�̃xx(ω, s)MTD̃T(ω, s))Ã−T(ω, s), (4.9)

where G̃ii (ω, s) represents the variability of the Poisson spiking of the recur-
rently connected neurons arising from the first two terms to the right of the
equality in equation 4.3. As such, G̃ii (ω, s) is given by the Fourier transform
of the autocorrelation function of the unperturbed spike train emanating
from output neuron i . In the absence of a refractory term, this is given by

G̃ii (ω, s) = ḡ(ūi (s), σ 2
ui

(s)). (4.10)

Similarly, since the input is stationary, the mean activity of the output
population is simply μy(s) = g(Wμy(s) + Mμx(s), σ 2

u (s)). Since the mean
is independent of time, we need to consider only the stationary (ω = 0)
mode of the covariance matrix, �̃yy(ω, s), to obtain linear Fisher information.
Finally, since the derivative of the mean often depends only weakly on
the variance of the membrane potential proxies, σ 2

u (s), we can neglect this
dependence and obtain a very simple expression for the derivative of the
mean of the output spikes with respect to the stimulus:

μ′
y(s) = DWμ′

y(s) + DMμ′
x(s). (4.11)

This leads to a simple expression for linear Fisher information:

Iy(s) = (Mμ′
x(s))T(M�̃xx(0, s)MT

+ D̃−1(0, s)G̃(0, s)D̃−1(0, s))−1Mμ′
x(s). (4.12)

If the feedforward connectivity matrix, M, is invertible and we set the
term D̃−1(0, s)G̃(0, s)D̃−1(0, s) to zero, equation 4.12 reduces to the linear
Fisher information in the input layer μ′

x(s)T
(
�̃xx(0, s)

)−1
μ′

x(s). Therefore,
these two terms, M and D̃−1(0, s)G̃(0, s)D̃−1(0, s), control the amount of
information lost between the input and output layers. The second term
can be interpreted as noise with variance, D̃−1(0, s)G̃(0, s)D̃−1(0, s), that is
added to the feedforward afferences or inputs of the network: (Mx).

At first sight, it would appear that the recurrent connectivity, W, has
no impact on information loss since it does not appear in equation 4.12.
However, recurrent connectivity does affect information loss implicitly by
modulating the shape of the steady-state tuning curve. This in turn af-
fects noise added to the feedforward afferences by modulating the matrices
D̃(0, s) and G̃(0, s), both of which store quantities evaluated at the steady-
state mean activity.
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Another important point to emphasize is that equation 4.12 is asymptot-
ically valid for any pattern of feedforward and recurrent connectivity that
scales in O(1/N), that is, when the variance of the membrane potential proxy
is small. Moreover, this expression can be used regardless of the function
that is being computed between the input and output layers. For instance,
with a proper choice of connectivity (i.e., a proper choice of M and W), it
is easy to build a network in which the input layer contains neurons with
gaussian tuning curves to s and in which the output layer contains optimal
tuning curves for some other variable of interest, z = h(s), where h(s) is a
nonlinear function of s. The Fisher information about z in the output layer
can still be obtained from an equation of the form of equation 4.12 but with
the prime now indicating z derivatives.

Although equation 4.12 was derived for a scalar variable s, it is easy to
extend this result to the case in which s is a vector. The i j th entry of the
linear Fisher information matrix is now given by

{Iy}i j (s) =
(

M
d

dsi
μx(s)

)T

(M�̃xx(0, s)MT

+ D̃−1(0, s)G̃(0, s)D̃−1(0, s))−1M
d

ds j
μx(s). (4.13)

As a result, this expression can be used to explore how tuning curve
parameters like width influence information content regardless of the di-
mensionality of s. This issue has been studied in the past but only for
independent noise (Zhang & Sejnowski, 1999; Brown & Backer, 2006).

We had to make several approximations to obtain the expression in
equation 4.12. Specifically, we assumed stationary statistics on input and
output populations, linearized about the noise-perturbed gain function,
and we ignored refractory effects. To check whether these approximations
induce significant errors, we simulated two-layer networks consisting of
between 100 and 2000 LNP neurons organized in an orientation hyper-
column (see Seriès et al., 2004, for details about the connectivity). Input
patterns of activity, x(t), were sampled from a Poisson distribution with
gaussian-shaped tuning curves of varying amplitude (Ain) and width (K in):

fi (s) = Aine(K in(cos(s−si )−1)). (4.14)

Correlated noise was also added to the rates of these Poisson processes to
create correlations in the input spikes. Specifically, we drew an additional
random variable z from a zero mean gaussian distribution with covariance
matrix given by

COV(zi , z j )(s) = C in
√

fi (s) f j (s). (4.15)

and then sampled input spikes according to x(t) = Poi ( fi (s) + zi ).



Fisher Information in Recurrent Networks 1493

For networks with N neurons in the output layer, feedforward connec-
tivity patterns took the form

Mi j = Aff

N
+ Bff

N
e(K ff(cos(si −s j )−1)), (4.16)

while recurrent weight patterns were parameterized by

Wi j = Arec

N
+ Brec

exc

N
e(Kexc (cos(si −s j )−1)) − Brec

inh

N
e(Kinh (cos(si −s j )−1)). (4.17)

Here, si indicates the preferred orientation of neuron i . The threshold and
slope of a rectified linear gain function were also manipulated, thereby
giving us the freedom to implement networks that performed recurrent
sharpening, recurrent and feedforward amplification, recurrent sharpening,
and sharpening via thresholding. The gain function was parameterized by

g(u) = α log
(

1 + e
u−θ
α

)
, (4.18)

allowing us to interpolate between threshold linear and exponential gain
functions. Neurons with fast and slow time constants, created by varying
the time course of ε(t), were also explored. Further, the effects of strongly
coupled neurons were investigated by creating networks in which all con-
nection strengths were identical and order one, but in which the probability
of a connection between two neurons was given by functions with the same
parametric form as M and W, as in Seriès et al. (2004).

We then computed the percentage of information preserved in the out-
put layer (obtained from the ratio of linear Fisher information in the output
layer to the same quantity in the input layer). This was done by comput-
ing the variance of the unbiased locally optimal linear estimator applied
to output spikes (Seriès et al., 2004). This empirically observed quantity
was then compared to the prediction obtained from equation 4.12. Figure 1
confirms that this expression does indeed provide a very tight bound on
linear Fisher information over a wide range of network parameters and
activation functions. Curiously, though neglected in the derivation, this
expression seems to hold even when refractory effects are included pro-
vided D̃ii (0, s) and G̃ii (0, s) are simply modulated by the expected value of
γ (t − t̂), that is, D̃ii (0, s) → γ̄ D̃ii (0, s) and G̃ii (0, s) → γ̄ G̃ii (0, s). This may
be due to the stationary statistics of the input process x(t), but further in-
vestigation is needed to explain this coincidence. We also tested whether
there is a significant fraction of information beyond the linear term by es-
timating information with a nonlinear decoder, namely, a support vector
machine with radial basis function kernels (SVM-RBF). We found that these
discrete classification algorithms extract less than 3.4% more information
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Figure 1: Empirically estimated (Observed) versus predicted percentage of
preserved linear Fisher information. The predictions were computed with
equation 4.12, while the empirically estimated, Fisher information was com-
puted by estimating the variance of the unbiased locally optimal linear estimator
applied to network simulations. Error bars indicate information estimated from
training and test data sets using early stopping. Both empirically estimated and
predicted Fisher information were normalized by the rate of accumulation of
Fisher information in the input population. Thus, values in this figure represent
the percentage of the information input into network that is recoverable in the
output population. Input populations and feedforward and recurrent connec-
tivity profiles were varied across a wide range of parameter values and network
functions, as were input tuning curves and covariance structure. Specifically, for
the input population Ain ∈ (10 Hz, 200 Hz), K in ∈ (0.5, 4), and C in ∈ (0, 0.5). For
feedforward connection, Aff ∈ (0, 1), Bff ∈ (0.5, 5), and K ff ∈ (0.5, 5). Parameters
for the recurrent connectivity were Arec ∈ (−0.6, 0.4), Brec

exc ∈ (0, 10), Brec
inh ∈ (0, 10),

K rec
exc ∈ (2, 4), and K rec

exc ∈ (0, 2). Spike counts were obtained from 0.5 second runs,
and the time constant of ε was between 5 and 10 ms. Each network was driven
by a broadly tuned population of independent Poisson spiking neurons. The
threshold linear gain function was parameterized by g(u) = α log(1 + e

u−θ
α ),

with α ∈ (0.1, 10) and θ ∈ (−5, 2). The refractory function was parameterized
by γ (t) = 1 − exp−t/τr where τr was between 0 and 10 ms. All parameter values
were sampled uniformly from the indicated intervals.

than the local optimal linear estimator does. The comparison between these
discrete classification algorithms and Fisher information was performed by
mapping the percentage of correct classification onto the equivalent value
of d-prime, which is related to the square root of Fisher information (Dayan
& Abbott, 2001).
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Next, we describe a few applications of the expression for Fisher infor-
mation derived above.

4.1 Optimal Firing Rate and Recurrent Sharpening. We saw that the
information loss in equation 4.12 is controlled by two terms. The second
term, G̃ii/D̃2

i i , is the ratio of the mean firing rate of a given output neu-
ron to the square of the sensitivity of the neuron as described by its lin-
ear transfer function. In the absence of a refractory term, this takes the
form ḡ(ūi , σ

2
i )/ḡ′(ūi , σ

2
i )2. For an exponential gain function, ḡ′(ūi , σ

2
i )2 ∝

ḡ(ūi , σ
2
i )2, in which case G̃ii/D̃2

i i ∝ 1/ḡ(ūi , σ
2
i ). From the perspective of a

single neuron, this implies that a higher firing rate always preserves more
information, with information loss becoming exponentially large as out-
put firing rates go to zero. The opposite result holds for a rectified linear
gain function. Indeed, in this case, ḡ′(ūi , σ

2
i )2 is equal to a constant and

G̃ii/D̃2
i i ∝ ḡ(ūi , σ

2
i ). Therefore, somewhat counterintuitively, with a linear

activation function, the more a given neuron fires, the less information it
transmits.

However, if one uses a linear gain function with LNP neurons, the effec-
tive noise-perturbed gain function, ḡ(ū, σ 2

u ), is exponential for a weak drive
and linear for a strong drive (Gerstner & Kistler, 2002; see Figure 2a). In this
case, there is a firing rate that minimizes the effective noise added (G̃ii/D̃2

i i )
because the effective noise added to the input reaches a minimum value.
A neuron that fires at the rate corresponding to this minimum can be said
to be firing at its optimal firing rate. For the particular gain function that
was used to create Figure 2b, this optimal firing rate is around 10 Hz. More
generally, we can conclude that optimal (information-maximizing) firing
rates occur where the gain function has positive curvature and satisfies√

ḡ(u)
′′ = 0.

This single neuron result can also be used at the network level to show
why severe sharpening of input tuning curves may be a particularly bad
idea. Consider, for example, the simple case depicted in Figure 2. Here the
feedforward afferences, Mx(t), are assumed to be independent and Poisson
with broad tuning curves (the dashed-dot lines in Figures 2c and 2d). Since
the afferences are independent, the contribution of each afference to Fisher
information in the inputs is given by the ratio of the square of the derivative
(with respect to the stimulus) of the mean drive to the mean drive of the
afference. These contributions are represented by the (dash-dot in Figures 2e
and 2f). Note that as usual, the most informative inputs are those that
correspond to the largest slope of the input tuning curves. Now consider two
networks: one that sharpens the tuning curves in the output layer (dashed
lines in Figure 2c) and one that does not (lines in Figure 2d). The solid line
in Figures 2e and 2f shows the effective noise added to each input afference
by the Poisson step in the output layer of both networks (corresponding to
the term ḡ(ūi , σ

2
u )/ḡ′(ūi , σ

2
u )2). This effective noise determines the fraction
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Figure 2: (a) The dashed-dot line shows a threshold linear gain function g(u).
When used in a network of LNP neurons, this linear function is smoothed
by the noise in the membrane potential proxy, resulting in the effective noise-
perturbed gain function shown with the dashed line. (b) Variance of the noise
that is effectively added to the input afferences of a neuron as a function of
its firing rate, when the noise perturbed gain function in (a dashed line) is
used. This gain function is close to an exponential function below 10 Hz. Above
10 Hz, the gain function is approximately linear. (c, d) The dashed-dot lines
indicate the mean drive (Mμx(s)) of the network when a horizontal (s = 0) bar
is presented, while the dashed lines indicate the mean response of the output
population, μy(s). Output neurons are indexed by their preferred orientation.
On the left, c is a network that sharpens its input activity, while on the right,
d is a network that does not sharpen. (e, f) The dashed-dot lines indicate the
contribution to the Fisher information in the input population that goes into a
particular neuron in the output layer, while the dashed line indicates the portion
of that information present in the output population. The solid line gives the
amount of noise effectively added to inputs to each neuron in the network by
the Poisson spiking nonlinearity.

of input information (dashed-dot curve in Figures 2e and 2f) that will be
conveyed in the output spike trains (dashed curve in Figures 2e and 2f).
The effective noise is minimal for neurons, with an output firing rate close
to the optimal value of 10 Hz as shown in Figure 2b.
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To optimize information transmission for the entire population of neu-
rons, effective noise added should be the smallest for neurons receiving the
most informative inputs. In the no-sharpening network, this is indeed the
case. The effective noise is small (solid curve in Figure 2f) when the input
information is high (dashed-dot curve in Figure 2f). For the sharpening net-
work, this is no longer the case. A large amount of noise is added to neurons
that receive highly informative inputs, resulting in large information loss.
This is due to the fact that as firing rates go toward zero, the effective noise
scales like one over the firing rate. Indeed, by computing the ratio of the
information in the input population to that in the output population, we
found that the sharpening network transmits only 27% of the information
it receives compared to 49% for the nonsharpening network.

Note also that for a given gain function g(u), this result holds regardless
of the specific mechanism by which the sharpening occurs and regardless
of the specific spatiotemporal covariance structure induced in the output
layer. Note, however, that we are not saying that sharpening is always
inefficient. As we will see next, a small amount of sharpening can in fact be
helpful; it is severe sharpening that generally destroys information.

4.2 Cortical Expansion, Redundant Codes, and Balanced Excitation
and Inhibition. Adding more neurons to a given layer is a well-known
way to decrease information loss, but this expression allows us to quantify
precisely the impact of the number of neurons on information loss. For ex-
ample, suppose that each layer is divided into subpopulations of neurons
with identical tuning curves and gain functions and that each subpopula-
tion has K neurons in the input layer and N neurons in the output layer.
In this case, averaging over the identically tuned neurons results in an ef-
fective noise-added term that scales like K

N . This indicates that increasing
the number of neurons in the output layer, N, while keeping the number
of input neurons, K , fixed has the effect of decreasing information loss
by an amount proportional to K

N . Equation 4.12 also indicates that even
when K = N, near-perfect information preservation can be achieved as
long as the code in the input layer is redundant (i.e., the information is
small compared to the number of neurons) and each of the output neurons
fires sufficiently close to its optimal firing rate. This is because neurons fir-
ing at their optimal rate effectively place a bound on the added-noise term,
D̃−1(0, s)G̃(0, s)D̃−1(0, s). When linear Fisher information is small compared
to the number of stimulus-tuned neurons in a large network, the eigenval-
ues of the associated covariance matrix must be large. As a result, the
eigenvalues of M�̃xx(0, s)MT must also be large. When they are sufficiently
large compared to the eigenvalues of the matrix that describes the effective
noise added, D̃−1(0, s)G̃(0, s)D̃−1(0, s), then this term can be neglected and
the linear Fisher information in the output layer will be very close to the
linear Fisher information in the input afferences.
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This is very convenient as it implies that a single layer of cortical ex-
pansion (i.e., a large increase in the number of neurons in the primary
sensory cortical areas) is sufficient to instantiate a redundant code, which
can then be propagated with small information loss across multiple lay-
ers, each of which has the same number of noisy neurons. To see why,
consider a single cortical expansion for which the first layer consists of M
independent Poisson neurons tuned to s. As a result, the information in the
network scales like M. Suppose these neurons project to an output layer
that has many more neurons: N � M. As previously indicated, reasonable
constraints on the activity of the output neurons is sufficient to ensure that
linear Fisher information is nearly perfectly preserved. But we have actually
accomplished more than simple information preservation. We have also in-
stantiated a redundant code in the output layer. This is because the amount
of information contained in the network is small (order M) compared to the
information capacity of the network, which is order N. This means that the
eigenvalues of the covariance matrix of the output layer, �̃yy(0, s), must be
large. Thus, if these output neurons are then used to drive another layer of
N, similarly tuned neurons, the covariance of the input afferences to this
third layer will satisfy the large eigenvalue condition necessary to ensure
that information, once again, is nearly perfectly preserved.

This result indicates that greater information preservation can be accom-
plished by simply increasing the magnitude of the feedforward connection
strengths, M (and thus increasing the magnitude of the eigenvalues of
M�̃xx(0, s)MT), while manipulating recurrent connections to keep the neu-
rons driven by the most informative inputs near the optimal rates. Since
connections between cortical areas are excitatory, local recurrent inhibition
would be needed to accomplish this. This, then, provides a simple expla-
nation for the information benefit of recurrent networks that balance large
excitatory inputs with local recurrent inhibition, a widely observed prop-
erty of cortical circuits (Marino et al., 2005).

4.3 Optimal Connectivity and Correlations. Finally, the framework
described here may be used to demonstrate that optimal connectivity and
tuning curve shape depend strongly on the correlations in the input layer.
This is illustrated in Figure 3, which shows optimal recurrent connectiv-
ity and tuning curve shape in an orientation hypercolumn for two cases:
one in which the input population consists of independent neurons and
one in which the input neurons are locally positively correlated. In both
cases, optimal connectivity was computed by gradient ascent applied to
the recurrent weight matrix to maximize Fisher information in response to
noisy images of oriented gratings across multiple contrast and image noise
levels. Feedforward connectivity was held fixed, as were the parameters of
the gain function (once again, partial derivatives with respect to σ 2

u were
small and so were ignored). Here, recurrent connections act to ensure that
the most informative inputs drive neurons that fire close to the optimal
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Figure 3: A comparison of the optimal tuning curves and recurrent connectivity
in the presence of significant correlations in the input population (left column)
and no correlations in the input population (right column). (a, b) The correlation
structure of the input afferences M�̃xx(0, s)MT, where feedforward connection
strengths, M, were chosen to have a narrow gaussian profile. Note that we
are not plotting �̃xx(0, s), which is why the matrix depicted in b is not diago-
nal despite the fact that the firing rates in the intput layer are independent.
(c, d) The correlation structure of optimal output populations at a moder-
ate value of the contrast with the diagonal removed for plotting purposes.
(e, f) Population patterns of activity in the output layer in response to an ori-
entation of 0 degree for low (blue line), medium (green), and high values (red)
of contrast. (g, h) Optimal recurrent connectivity profiles. On the right side
(uncorrelated inputs), the most informative neurons are the ones close to the in-
flection point of the population activity. The recurrent connectivity favors local
excitation to bring these most informative neurons near the optimal firing rate,
which in this network is about 10 Hz. On the left side (correlated inputs), the
most informative neurons are now closer to the peak of the population activity.
In this case, the recurrent excitation is reduced to keep neurons near the peak
around the optimal firing rate of 10 Hz.

rate, that is, the rate that the effective noise added (G̃ii/D̃2
i i ), is minimized

for this particular choice of nonlinear gain function. In the independent
case, this means that output neurons that lie near the inflection point of
the tuning curve fire near the optimal rate of 10 Hz, while the relatively
uninformative inputs at the peak of the tuning curve fire at a much higher
rate. In the positively correlated case, neurons near the peak of the tuning
curve are now relatively more informative than in the independent case,
while neurons near the tail are now relatively less informative. This can be



1500 J. Beck, V. Bejjanki, and A. Pouget

observed by noting the change in the spectra of the covariance matrix of the
input afferences. As a result, optimization now penalizes local excitation
and has the effect of decreasing the amplitude (and, to a lesser extent, the
sharpness) of the tuning curves so that the neurons close to the peak fire
near the optimal rate, while the now less informative neurons in the tail
have been driven below the optimal rate.

5 Discussion

We have derived a simple expression for linear Fisher information in a
network of LNP neurons with arbitrary connectivity. This expression can
be used to explore the efficiency of information transmission in networks
of spiking neurons computing nonlinear functions, thereby representing
an important step toward elucidating the neural basis of processes such
as attention and perceptual learning, which allow the nervous system to
access more information regarding behaviorally relevant sensory stimuli.

This analysis is limited to linear Fisher information: the fraction of
Fisher information that is recoverable by a locally optimal linear estima-
tor. Whether this is a severe limitation remains to be seen. We have found
that empirically, it is exceedingly difficult to find any information beyond
the linear term in networks of spiking neurons. Moreover, the amount of
data required to estimate the nonlinear contributions to Fisher information
is typically prohibitively large, because one needs to estimate the third-
order and higher-order statistics of spike trains. Similar issues arise with
spike timing codes, which convey information through the presence (or
absence) of coincident or time-delayed coincident spikes. Such a code is
present when the sufficient statistic, T(y), is influenced by these coincident
spikes, as is the case when T(y) spans the space of quadratic functions of y.
Since estimation of Fisher Information requires an estimate of the covari-
ance of the sufficient statistic, the analysis of such a code would require
estimates of the third and fourth moments of y.

Finally, we have also assumed that the stimulus is constant over time
and that the network has reached a noise-perturbed steady state. While
this is sufficient to model a wide variety of behavioral experiments, there is
no question that the extension of this work to time-varying stimuli would
be of use. However, it is not yet clear that linearizing the Poisson spiking
nonlinearity around a nontrivial dynamic state will yield an approximation
comparable to that observed in the stationary case.
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