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A large body of research has established that, under
relatively simple task conditions, human observers
integrate uncertain sensory information with learned
prior knowledge in an approximately Bayes-optimal
manner. However, in many natural tasks, observers
must perform this sensory-plus-prior integration
when the underlying generative model of the
environment consists of multiple causes. Here we ask
if the Bayes-optimal integration seen with simple
tasks also applies to such natural tasks when the
generative model is more complex, or whether
observers rely instead on a less efficient set of
heuristics that approximate ideal performance.
Participants localized a ‘‘hidden’’ target whose
position on a touch screen was sampled from a
location-contingent bimodal generative model with
different variances around each mode. Over repeated
exposure to this task, participants learned the a
priori locations of the target (i.e., the bimodal
generative model), and integrated this learned
knowledge with uncertain sensory information on a
trial-by-trial basis in a manner consistent with the
predictions of Bayes-optimal behavior. In particular,
participants rapidly learned the locations of the two
modes of the generative model, but the relative
variances of the modes were learned much more
slowly. Taken together, our results suggest that
human performance in a more complex localization
task, which requires the integration of sensory
information with learned knowledge of a bimodal
generative model, is consistent with the predictions

of Bayes-optimal behavior, but involves a much
longer time-course than in simpler tasks.

Introduction

Humans (and other animals) operate in a world of
sensory uncertainty, created by noise or processing
inefficiencies within each sensory modality or by
variability in the environment (Knill & Pouget, 2004).
Given the presence of such internal and external
uncertainty, task performance is limited by the quality
of sensory information that is available on a given trial.
Consider for example, the task of estimating the
location of a target based on visual information, such
as the problem faced by a baseball player trying to hit a
rapidly approaching ball. Due to uncertainty in the
visual signal available to the observer, an ideal
approach to estimating the ball’s location at the point
of impact with the bat would be to combine the
uncertain sensory information available on each pitch
with prior knowledge about the likely locations of the
ball, such as the areas in the strike zone that a given
pitcher prefers to target, learned over prior encounters
with that pitcher. Bayesian inference provides a
principled approach for accomplishing this in a
statistically efficient fashion; that is, in a manner that
maximally utilizes the available information (Bernardo
& Smith, 1994; Cox, 1946; Yuille & Bülthoff, 1996).
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Several studies have shown that human observers
combine prior information with uncertain sensory
information in a manner predicted by Bayes-optimal
behavior, in tasks including visual motion perception
(Stocker & Simoncelli, 2006; Weiss, Simoncelli, &
Adelson, 2002), visuo-motor integration (Kording &
Wolpert, 2004; O’Reilly, Jbabdi, Rushworth, & Beh-
rens, 2013; Sato & Kording, 2014; Tassinari, Hudson,
& Landy, 2006; Vilares, Howard, Fernandes, Gottfried,
& Kording, 2012), timing behavior (Jazayeri &
Shadlen, 2010; Miyazaki, Nozaki, & Nakajima, 2005),
cue combination (Adams, Graf, & Ernst, 2004; Jacobs,
1999; Körding et al., 2007), categorical judgments
(Bejjanki, Clayards, Knill, & Aslin, 2011; Huttenlocher,
Hedges, & Vevea, 2000), and movement planning
(Hudson, Maloney, & Landy, 2007; Kwon & Knill,
2013). For example, considering the task of estimating
the spatial location of a target based on uncertain
visual information, previous studies have shown that
human observers combine visually presented prior
information (in the form of a Gaussian blob) with
uncertain sensory information, in a Bayes-optimal
fashion (Tassinari et al., 2006). Furthermore, several
studies have shown that human observers are also
capable of learning prior distributions over repeated
exposure to a task (when receiving a single sample from
the prior distribution on each trial), and integrating this
learned knowledge with uncertain sensory information
in a Bayes-optimal fashion (Berniker, Voss, & Kording,
2010; Kording & Wolpert, 2004; O’Reilly et al., 2013;
Vilares et al., 2012). It is important to note that these
studies used tasks in which observers were faced with
uncertain sensory information about stimuli drawn
from relatively simple prior distributions, or generative
models in the language of Bayesian analysis, such as
unimodal Gaussian distributions. An example of a task
with such a simple generative model would consist of
searching for a reward at a single hiding place, where
the reward is replenished according to a Gaussian delay
interval. Even in cases where the distributional
properties of the generative model were changed over
the course of the experiment (Berniker et al., 2010;
O’Reilly et al., 2013; Vilares et al., 2012), this was done
in a blocked manner, such that in a given block of
trials, observers were faced with stimuli drawn from a
unimodal Gaussian distribution.

In contrast to the tasks considered by these previous
studies, in the natural environment, human observers
are typically faced with tasks involving more complex
generative models. Specifically, the stimulus of interest
on each trial is usually drawn from one of a number of
potential environmental causes, in a randomly inter-
leaved (i.e., not blocked) fashion. If we assume that the
statistical properties of the stimulus distribution
associated with a given environmental cause are
represented by a Gaussian distribution, then such a

complex generative model is best described by a
mixture model over multiple Gaussian distributions.
An example of a task with such a complex generative
model would consist of searching for a reward inside
one of several hiding places, each of which has its own
Gaussian delay interval. Furthermore, the sensory
information available to observers in their natural
environment typically includes several levels of uncer-
tainty, again in a randomly interleaved fashion. Given
these task properties, ideal behavior involves learning
the complex generative model (i.e., the mixture model
over all possible causes) for the task by learning the
underlying distributions pertaining to each cause,
associating the uncertain sensory information available
on each trial with the relevant cause that might have
generated it, and efficiently integrating the sensory
information with the learned generative model on a
trial-by-trial basis.

Given the significant increase in complexity associ-
ated with learning and efficiently using such complex
generative models, it remains an open question as to
whether human observers continue to behave in a
Bayes-optimal manner. For instance, as the number of
causes goes up, it might be prohibitively expensive from
a computational perspective (i.e., the combinatorial
explosion problem) to track and learn the complete
generative model for the task. Observers might instead
choose to employ suboptimal heuristics or strategies to
simplify task performance, such as basing their
performance on only the mean of the sensory
information available across a series of trials, and not
on the variance of that sensory information. It is worth
noting that results from a prior study using a bimodal
generative model (i.e., simulating a mixture model over
two environmental causes) suggest that human ob-
servers can learn and utilize such complex generative
models in an approximately Bayes-optimal manner
(Kording & Wolpert, 2004). However, this experiment
only involved one level of sensory uncertainty and the
two mixture components of the generative model did
not differ in their variance (i.e., in the reliability with
which they signaled the underlying cause-specific
stimulus information). As a result, since it did not vary
the reliability of either the sensory information or the
prior information, this experiment was not amenable to
fully testing the predictions of the Bayesian model in
tasks involving complex generative models; that is, the
prediction that the weight assigned to the two sources
of information should vary, on a trial-by-trial basis, in
proportion to the reliability of each source of
information. Furthermore, this experiment did not
examine the dynamics of the process by which the
complex generative model was learned.

In the current study, we examined human behavior
when faced with stimuli drawn from a complex
generative model, using a spatial localization task that
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allowed us to vary the uncertainty implicit in both the
sensory information and the prior information, on a
trial-by-trial basis. Our design simulated a mixture
model over two environmental causes, and, as a first
logical step, considered the scenario in which the
participant is perfectly cued as to the underlying cause
on each trial. We implemented this using a location-
contingent generative model—the task-relevant stimu-
lus on each trial was drawn from a mixture of two
underlying Gaussian distributions, with one distribu-
tion always centered at one location on the screen and
the other always centered at a distinct second location
on the screen, and with one distribution being more
variable (i.e., representing a less reliable a priori signal
about the likely location of a target drawn from that
distribution) than the other. On each trial, the location
of the target was drawn randomly from this bimodal
spatial distribution, and participants were presented
with a cluster of dots that was randomly drawn from a
separate Gaussian distribution centered on this true
‘‘hidden’’ location. The cluster of dots, depending on its
variance (which could be low, medium, or high),
provided a more or less reliable estimate of the target’s
hidden location on each trial (reliability being inversely
proportional to the variance of the dot cluster). Across
trials, observers could integrate information from the
observed cluster of dots (i.e., the likelihood), with trial-
by-trial feedback they received on previous trials about
the underlying bimodal distribution governing the
likely locations of the target (i.e., the ‘‘prior’’). This
experimental design allowed us to better study the
computational mechanisms used by human observers
in tasks involving complex generative models than was
possible with previous studies. Specifically, while
aspects of our task are similar to those used in previous
studies (especially Berniker et al., 2010; Kording &
Wolpert, 2004; Tassinari et al., 2006; and Vilares et al.,
2012) by randomly interleaving multiple underlying
distributions (which varied in their reliability) and
multiple levels of sensory uncertainty, on a trial-by-trial
basis, our design allows us to fully test the predictions
of the Bayesian model in tasks involving complex
generative models, and to rule out alternative subop-
timal strategies that could potentially be used to carry
out the task.

There are several computational models that partic-
ipants could potentially use to estimate the location of
the hidden target on each trial of this task. As
mentioned above, for example, due to the complexity
inherent in the statistics that govern target location
across trials, participants might choose to ignore this
‘‘latent’’ source of information and instead base their
estimates solely on the sensory information available
on each trial. For instance, they might simply choose
the centroid of the cluster of dots as their estimate for
the target location on each trial. An alternate strategy

might be to learn some summary statistic, such as the
average location, that describes each mixture compo-
nent of the generative model and to bias their estimates
toward that source of information. Both these kinds of
strategies would, however, be statistically suboptimal
because they would not maximally exploit all the
sources of information available to the observer.
Instead, a statistically optimal approach would entail
learning the distributional statistics (both the mean and
the variance) characterizing each mixture component of
the generative model, and integrating this information
with the sensory information available on each trial, in
a manner consistent with the predictions of Bayes-
optimal behavior. This approach predicts that the
weight assigned by participants to the sensory infor-
mation should drop as the reliability of the sensory
information goes down (i.e., the variance of the cluster
of dots goes up), and, crucially, this drop should be
greater when the stimulus is drawn from the mixture
component that has lower variance (i.e., greater
reliability). By following this strategy, participants
would maximally utilize all the sources of information
available on each trial by appropriately weighting each
source of information by the uncertainty implicit in it.

We provide evidence from two experiments that,
over multiple exposures to the task of estimating the
location of a hidden target, human observers not only
learn the complex distributional statistics about the a
priori locations of the target (i.e., they learn the
location-contingent bimodal generative model), but
also integrate this knowledge with uncertain sensory
information on a trial-by-trial basis, in a manner
consistent with the predictions of Bayes-optimal
behavior. Importantly, our experimental design al-
lowed us to validate the predictions of the Bayesian
model in a very specific manner, and thus rule out
alternative suboptimal strategies that could be used to
carry out the task. Consistent with the predictions of
the Bayesian model, we found that participants
assigned a smaller weight to the sensory information as
the reliability of sensory information went down, and
that this drop was greater when the stimulus was drawn
from the more reliable mixture component of the
complex generative model used in the task. Our design
also allowed us to examine the dynamics underlying the
process by which participants learned the complex
generative model. Extending prior work using simple
generative models (Berniker et al., 2010), we found that
participants quickly learned the mean locations for the
bimodal generative model (i.e., the centers of the two
distributions that made up the mixture components of
the generative model for the task), but it took them
much longer to learn the relative variances of the
mixture components of these two modes. Furthermore,
our results show that in tasks with such complex
generative models, the learning rate is dramatically
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slower than that observed previously with simple
generative models, presumably due to the significantly
increased complexity involved in tracking and learning
the means and variances of the generative model,
especially when sensory uncertainty was also variable.
Taken together, our results therefore provide compel-
ling evidence in support of the hypothesis that, when
faced with complex environmental statistics, human
observers are capable of learning such distributions,
and utilizing this learned knowledge in a statistically
efficient fashion.

General methods

We developed a spatial localization task where the
participants’ goal on each trial was to estimate the
location of a hidden target by touching the appropriate
location on a touch-sensitive display (Figure 1A).
Several aspects of our task were similar to the task used
in Kording and Wolpert (2004), Tassinari et al. (2006),
and Vilares et al. (2012). The horizontal and vertical
coordinates of the target location on each trial were
independently drawn from a complex generative model:
a location-contingent mixture distribution over two
underlying isotropic two-dimensional Gaussian distri-

butions. These Gaussian distributions differed in their
mean locations (one of them was always centered in the
left half of the display while the other was always
centered in the right half of the display), and their
relative variances (one of them had a standard
deviation of 40 pixels while the other had a standard
deviation of 20 pixels). Across participants, the
distributions were always centered at the same loca-
tions on the left and right of the display, but the
variance assigned to each was counterbalanced with the
higher variance distribution centered in the left half of
the display for 50% of the participants, and in the right
half of the display for the other 50%.

On each trial, participants were not shown the true
target location; instead, they were presented with
uncertain sensory information about the target location
in the form of a two-dimensional cloud of eight small
dots (Figure 1A). This cloud was independently
generated on each trial by drawing samples from a
separate two-dimensional isotropic Gaussian distribu-
tion centered at the true target location for that trial
(i.e., the location of the target drawn for that trial from
the complex generative model). The variance of this
cloud of dots was manipulated to generate sensory
information with three levels of reliability, with
reliability inversely proportional to the variance of the
dot distribution. Specifically, the dots were drawn from

Figure 1. Learning and inference in a spatial localization task. (A) An illustration of a typical trial. After participants touched a ‘‘GO’’
button, they were presented with uncertain sensory information in the form of a cloud of dots (the likelihood) with one of three

levels of variance (low variance shown here; see inset for an illustration of the three levels). Participants estimated the location of a

hidden target, drawn from a complex generative model (a mixture over two Gaussian distributions: the prior), by touching a location

on the display. Feedback was provided posttouch. (B) An illustration of Bayes-optimal behavior. Considering the example of a target

drawn from the broad prior distribution, the ideal observer would learn the mean and variance of the prior and integrate this learned

knowledge with the likelihood on each trial, to estimate the location of the hidden target.

Journal of Vision (2016) 16(5):9, 1–13 Bejjanki, Knill, & Aslin 4

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/Journals/JOV/935062/ on 03/22/2016



a distribution that either had low variance (SD of 10
pixels), medium variance (SD of 60 pixels), or high
variance (SD of 100 pixels; see inset of Figure 1A for an
illustration of the three levels of variance). After
participants provided their response by touching a
location on the display, feedback on their accuracy on
that trial was provided by displaying a new dot at the
touched location and a second new dot at the true
target location. In addition, participants received
feedback in the form of numerical points, with the
magnitude of the points varying based on their
accuracy.

Experiment 1: Can human observers
learn and efficiently use complex
prior knowledge?

In Experiment 1, participants were exposed to 1,200
trials of the spatial localization task, with half the trials
involving targets drawn from each of the two under-
lying Gaussian distributions (the mixture components
of the location-contingent generative model). These
two sets of 600 trials were randomly intermixed and
within each set, 200 trials were randomly presented
with one of the three levels of reliability; in other words,
six total conditions were randomly interleaved
throughout the experiment. In each trial, participants
therefore had access to two sources of information—
the uncertain sensory information available on that
trial (i.e., the cloud of dots that corresponded to the
likelihood) and any knowledge they might have learned
up to that point in the experiment, based on feedback
received in previous trials, about the likely locations of
the target (i.e., the mixture distribution over the two
underlying Gaussian distributions that corresponded to
the prior). Participants received two cues on each trial
as to which of the two underlying Gaussian distribu-
tions the target on that trial was drawn from: the side
of the display in which the sensory information was
presented (the two underlying distributions were always
centered in opposite halves of the display) and the color
of the sensory information (the color of the dot cloud
was set either to green or white, depending on the target
distribution). Since the components of the complex
generative model were perfectly separable given the
location contingent cues on each trial, we can
characterize the prior as involving two separable
distributions, conditioned on the trial-specific location
and color of the sensory information. Accordingly, in
the rest of this article, we refer to the two Gaussian
distributions that make up the mixture components of
the complex generative model, as the ‘‘broad’’ prior
distribution (the distribution with the larger standard

deviation) and the ‘‘narrow’’ prior distribution (the
distribution with the smaller standard deviation).

There are several computational models that partic-
ipants could potentially use to carry out this task. One
possibility is that participants just ignore the underlying
prior distributions and base their estimates solely on
the sensory information available on each trial. That is,
given the complexity implicit in the generative model
governing target location, participants can ignore this
source of information (rather than expend the compu-
tational resources to track and learn the location-
contingent prior distributions) and instead just choose
the centroid of the cluster of dots (which are visible on
each trial) as their estimate for the hidden target
location. This strategy would predict that participants
would assign a weight of one to the likelihood (i.e., base
their responses solely on the sensory information),
irrespective of the reliability of the sensory information
or the reliability (or inverse variance) of the prior
distribution for that trial. Furthermore, we would
expect to see no change in participants’ weights as a
function of exposure to the task, since this strategy does
not involve any learning (cf., the likelihood distribution
is drawn independently on each trial). Importantly,
however, such a computational strategy (henceforth
referred to as Model 1) would be suboptimal for two
reasons: first, as the reliability of the sensory informa-
tion goes down, the probability that the centroid of the
sensory information will correspond exactly to the true
target location also goes down; and second, by ignoring
the information provided by the prior distributions,
participants cannot take advantage of the fact that not
all spatial locations are a priori equally likely.

A second possibility is that participants are sensitive
to the underlying generative model but given the
complexity involved in the task, they choose to learn
only the mean locations for the two prior distributions
while ignoring their relative variances (i.e., their relative
reliability)—learning only the means is statistically
easier and requires exposure to far fewer trials. By
learning the average position for where the target tends
to be, for each prior distribution participants can use
this knowledge to bias their estimates, particularly as
the reliability of the sensory information goes down.
This model (Model 2) predicts a smaller weight to the
likelihood, as the reliability of the sensory information
goes down, and it also predicts that as participants gain
greater exposure to the underlying distributions (thus
allowing them to better learn the two prior means),
their behavior should show a greater sensitivity to the
underlying prior distributions. However, a key predic-
tion of this model is that for each level of sensory
reliability, we should see identical weights being
assigned to the likelihood, for targets drawn from the
two different prior distributions, because the variances
of the prior distributions are ignored by this model.
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Thus, this model is still suboptimal since the narrow
prior distribution is a more reliable indicator of the
likely target location across trials, compared to the
broad prior distribution, and an optimal observer
should take this into account.

Finally, a third possibility is that participants learn
both the mean positions and the relative reliabilities of
the two prior distributions, and integrate this learned
knowledge with the sensory information available on
each trial in a manner that is consistent with the
predictions of Bayes-optimal behavior (Model 3). If
participants use such a strategy, we should see a smaller
weight to the likelihood as the reliability of the sensory
information goes down, and this drop should be greater
for trials in which the target is drawn from the narrow
prior, than when the target is drawn from the broad
prior. Furthermore, this model predicts that, as
participants gain greater exposure to and thus learn
more about the underlying distributions, participants’
behavior should show a greater sensitivity to the
statistical properties (both mean location and relative
variance) of the underlying distributions (see Figure 1B
for an illustration). Formally, if the mean and the
variance of the sensory information on a given trial is
given by ll and r2

l , and the mean and the variance of
the underlying target distribution for that trial is given
by lp and r2

p, then the target location t̂ predicted by this
model would be (Bernardo & Smith, 1994; Cox, 1946;
Jacobs, 1999; Yuille & Bülthoff, 1996):

t̂ ¼ wlll þ ð1� wlÞlp ð1Þ

where wl, the weight assigned by the observer to the
sensory information, should be:

wl ¼
1=r2

l

1=r2
l þ 1=r2

p

ð2Þ

By examining the weights assigned by participants to
the likelihood on each trial, given the relative reliability
of the sensory information and the prior information
on that trial, we sought to distinguish between the three
potential strategies described above (i.e., Models 1, 2,
and 3). In addition, we sought to characterize learning-
induced changes in participants’ weights, as a function
of exposure to the task, by splitting the total number of
trials into four temporal bins, each of which included
300 trials of exposure to the task (with the six
conditions randomly interleaved in each bin).

Methods

Participants

Eight undergraduate students at the University of
Rochester participated in this experiment, in exchange
for monetary compensation. Each participant had
normal or corrected-to-normal vision, was naı̈ve to the

purpose of the study, and provided informed written
consent. The University of Rochester’s institutional
review board approved all experimental protocols.

Procedure

Before the start of the experiment, participants were
provided with the following task instructions:

In this study, you will be playing a game on the
iPad. The story behind this game is that you are at
a fair and there is an invisible bucket that you are
trying to locate. Sometimes the bucket is going to
be located on the left side of the display and at
other times the bucket is going to be located on
the right side of the display. Now, given that the
bucket is invisible, you can’t see where it is.
However, on each trial you will see some locations
that other people have previously guessed the
bucket is located at. These ‘‘guesses’’ will show up
as white or green dots on the screen. Now, it is
important to note that you don’t know which (if
any) of the dots actually correspond to the
location of the bucket. Indeed, all of the dots
could be just random guesses. Your job on each
trial is to try to figure out where the bucket is
actually located. Once you decide on a location,
you can just touch it, at which point you will see
two more dots: a red dot, which shows you the
true location of the bucket on that trial, and a blue
dot, which shows you the location that you
touched. If the blue dot is right on the red dot,
then you correctly guessed the location of the
bucket and you will get 20 points. If you don’t
exactly guess the location of the bucket but you
still get close, then you will get 5 points. When you
see this, it means that you need to try just a little
harder to get the right location—you are close.
Finally, if your guess is very far away, you will get
no points.

Participants were seated at a comfortable viewing
distance from a touch-sensitive display (iPad 2; Apple,
Inc., Cupertino, CA), with a resolution of 768 pixels
(vertical) 3 1024 pixels (horizontal). Participants
provided responses using their finger, having been
instructed to pick a favorite finger and to consistently
use that finger throughout the experiment. At the start
of each trial, they were presented with a ‘‘GO’’ button
centered at the bottom of the display. Once they
touched this button, the trial started with the presen-
tation of a cluster of white or green dots (the
‘‘guesses’’). Participants were told to estimate the
location of the hidden target as rapidly and accurately
as possible by touching a location on the screen. After
participants provided a response, the cluster of dots
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disappeared and feedback was provided. The game
included multiple levels: once a participant accumu-
lated a total of 600 points on each level, they were
shown a congratulatory screen and allowed to ‘‘level
up.’’ Progress toward the next level was always shown
at the top of the screen, using a progress bar. This
ability to level up was used solely to motivate
participants and did not represent any change in the
experimental procedure. Participants carried out a total
of 1,200 trials, split across four experimental blocks.
Short breaks were allowed between blocks, and the
total experimental duration, including breaks, was
approximately 50 min.

Data analysis

To quantify the computational mechanisms used by
participants in this experiment, we estimated the extent
to which their behavior depended on the likelihood
versus the prior on each trial. Specifically, we used
linear regression to compute the weight (wl) assigned to
the centroid of the cluster of dots (the likelihood), with
the weight assigned to the mean of the underlying
target distribution for that trial (the prior) being
defined as (1 � wl). Thus, on each trial, given the
centroid of the sensory information (ll), the mean of
the underlying target distribution (lp) and participants’
estimate for the target location (t̂ ), the weight assigned
by participants to the centroid of the sensory infor-
mation (wl) was estimated using:

t̂ ¼ wlll þ ð1� wlÞlp þ noise ð3Þ

We focused on participants’ performance in the
vertical dimension to eliminate the potential influence
of variability that may have been introduced by an
interaction between participants’ handedness and the
horizontal separation of the prior locations. Moreover,
their performance in the horizontal dimension was
similar to their performance in the vertical dimension—
we found no interaction between dimension (horizontal
vs. vertical) and exposure bin, across prior and
likelihood conditions (all ps . 0.05).

Results and discussion

Consistent with the predictions of the Bayes-optimal
model (Model 3), by the end of exposure to the task
(i.e., in the final temporal bin) observers assigned a
reliably smaller weight to the likelihood (and thus, a
greater weight to the prior) as the sensory information
decreased in reliability (Figure 2). In a 2 (prior
variance) 3 3 (likelihood variance) repeated measures
ANOVA carried out over participants’ weights in the
final temporal bin, there was a main effect of likelihood
variance, F(2, 14)¼ 18.89, p , 0.001.

Furthermore, for each prior condition, there was a
reliable interaction between exposure and likelihood
variance: as participants gained more exposure to the
task, they assigned a smaller weight to the likelihood,
and this drop in weight was greater as the likelihood
variance increased (Figure 3). Specifically, in a 4
(temporal bin) 3 3 (likelihood variance) repeated
measures ANOVA carried out over participants’
weights in the broad prior condition, there was a main
effect of temporal bin, F(3, 21)¼ 4.00, p¼ 0.02, a main

Figure 2. Data from the final temporal bin, for a representative participant in Experiment 1. Consistent with the predictions of Bayes-

optimal behavior, as likelihood variance increased (blue to green to red), participants shifted from selecting the centroid of the

sensory information as their estimate for the target location (the gray dashed line), toward selecting the mean of the underlying prior

distribution (zero on the y-axis). This was true in both the broad (A) and narrow (B) prior conditions, but the shift was more

pronounced for the narrow prior condition than for the broad prior condition. For illustrative purposes, the mean of the underlying

prior distribution was removed from participants’ response locations, and from the locations of the centroid of the sensory

information. Each dot represents a trial and solid lines represent the best-fit regression lines in each condition.
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effect of likelihood variance, F(2, 14) ¼ 21.17, p ,

0.0001, and an interaction between the two factors,
F(6, 42)¼ 5.22, p , 0.001. Similarly, in a 4 (temporal
bin) 3 3 (likelihood variance) repeated measures
ANOVA carried out over participants’ weights in the
narrow prior condition, there was a main effect of
temporal bin, F(3, 21)¼ 9.06, p , 0.001, a main effect
of likelihood variance, F(2, 14)¼12.24, p , 0.001, and
an interaction between the two factors, F(6, 42)¼5.47,
p , 0.001. These findings are inconsistent with Model
1, which predicts a weight of 1 to the sensory
information across all the likelihood and prior
conditions and no change in participants’ weights as a
function of exposure to the task. Furthermore, in
contrast to the predictions of Model 2, we found that
the drop in the weight assigned by participants to the
likelihood as a function of exposure to the task,
particularly in the high likelihood variance condition,
was greater for trials in which the target was drawn
from the narrow prior, than when the target was
drawn from the broad prior. In a 4 (temporal bin)3 2
(prior variance) repeated measures ANOVA carried
out over participants’ weights in the high likelihood
variance condition, we saw a main effect of temporal
bin, F(3, 21) ¼ 8.29, p , 0.001, and an interaction
between temporal bin and prior variance, F(3, 21) ¼
3.07, p ¼ 0.05. This finding suggests that participants
are sensitive to, and learn, both the means and the
relative variances of the underlying prior distribu-
tions. Taken together, this pattern of results provides
clear evidence in support of Model 3—the hypothesis
that human observers learn the complex generative
model and use this learned knowledge in a manner

that is consistent with the predictions of Bayes-
optimal behavior.

Experiment 2: Exploring the
dynamics of learning

While the results from Experiment 1 support the
hypothesis that participants learn the complex gener-
ative model and use this knowledge in a statistically
efficient manner, the dynamics of this learning remain
unclear. For instance, prior work (Berniker et al.,
2010) has shown that when presented with stimuli
drawn from simple generative models, human ob-
servers rapidly learn the prior mean, but it takes them
many more trials to learn the prior variance. In
Experiment 2, with a new group of participants, we
examined the dynamics of learning with complex
generative models by including an extra condition,
randomly interleaved with all the conditions used in
the first experiment, in which no sensory information
was presented. In this condition, observers thus had to
estimate the position of the target based solely on their
learned knowledge (up to that point) about where the
target was likely to occur (i.e., based on their prior
knowledge), thereby allowing us to analyze their
evolving learned knowledge of the location-contingent
generative model as a function of exposure to the task.
Participants carried out 400 trials of this condition,
split evenly between the two prior distributions. On
each trial, they were cued to estimate the location of
the target on either the left or the right of the display

Figure 3. Weights assigned to the centroid of the sensory information in Experiment 1. Consistent with the predictions of Bayes-

optimal behavior, participants in Experiment 1 relied less on the sensory information, and more on the priors, as the variance of the

sensory information increased. This was true for both broad (A) and narrow (B) prior conditions, with the drop in the weight to the

sensory information being greater for the narrow prior condition than for the broad prior condition. Furthermore, for both prior

conditions, as variance increased, the drop in the weight to the sensory information was greater as participants gained more exposure

to the task. Each temporal bin included 300 trials split between the two prior conditions, and the four bins of trials are depicted in

temporal order. Columns represent means and error bars represent SEM across participants.
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(with a box that was colored green or white), thus
requiring them to draw on their learned knowledge of
the location-contingent prior distribution associated
with that trial. As in Experiment 1, the 1,600 trials in
Experiment 2 (all conditions from Experiment 1 plus
400 trials in this extra condition) were again split up
into the relevant prior and likelihood conditions (the
no sensory information condition is statistically
equivalent to a likelihood condition with infinite
uncertainty), and with each condition being further
split into four temporal bins to study the influence of
task exposure.

Methods

Participants

Eight undergraduate students at the University of
Rochester participated in this experiment, in exchange
for monetary compensation. Each participant had
normal or corrected-to-normal vision, was naı̈ve to the
purpose of the study, provided informed written
consent and did not participate in Experiment 1. The
University of Rochester’s institutional review board
approved all experimental protocols.

Procedure

Before the start of the experiment, participants were
provided with task instructions that were nearly
identical to those provided to participants in Experi-
ment 1. Specifically, in addition to the instructions from
Experiment 1, they were also provided with the
following instructions:

There will also be some trials in which you will
be the first person to guess the location of the
bucket. In these trials, rather than seeing dots on
the screen, you will see a briefly flashed white or
green rectangle, which will indicate the side of the
screen that the invisible bucket is located at—the
bucket could be located anywhere inside that
rectangle. Again, your job is to try to figure out
where the bucket is actually located.

On each trial of the experiment, the procedure was
identical to that used in Experiment 1, except for the
extra condition in which no sensory information was
presented. In the trials corresponding to this condition,
after participants touched the GO button, they saw a
briefly flashed green or white rectangle, spanning either
the left half or the right half of the display. After
participants provided a response, feedback was pro-
vided as in all the other conditions. Participants carried
out a total of 1,600 trials, split across four experimental
blocks. Short breaks were allowed between blocks, and

the total experimental duration, including breaks, was
approximately an hour.

Data analysis

As in Experiment 1, for the trials in which sensory
information was available, we used linear regression to
compute the weight (wl) assigned to the centroid of the
cluster of dots (the likelihood), with the weights
assigned to the mean of the underlying location-
contingent target distribution for that trial (the prior)
being defined as (1 � wl). For the trials in which no
sensory information was available, we computed
participants’ mean responses, across all trials in each
temporal bin. As in Experiment 1, we again focused on
performance in the vertical dimension.

Results and discussion

We first examined the weights assigned by partici-
pants to the likelihood and the prior for the trials in
which sensory information was available, and found
that their behavior was similar to that in Experiment 1
(Figure 3). Specifically, in line with the Bayes-optimal
model (Model 3), by the end of exposure to the task in
Experiment 2 (i.e., in the final temporal bin), observers
assigned a reliably smaller weight to the likelihood (and
a greater weight to the prior) as the sensory informa-
tion decreased in reliability (Figure 4). In a 2 (prior
variance) 3 3 (likelihood variance) repeated measures
ANOVA carried out over participants’ weights in the
final temporal bin, there was a main effect of likelihood
variance, F(2, 14)¼ 45.84, p , 0.0001, and an
interaction between the two factors, F(2, 14)¼ 3.83, p¼
0.047. Furthermore, for each prior condition, we again
found an interaction between exposure and likelihood
variance. Specifically, in a 4 (temporal bin) 3 3
(likelihood variance) repeated measures ANOVA
carried out over participants’ weights in the broad prior
condition, there was a main effect of temporal bin, F(3,
21)¼ 7.49, p¼ 0.001, a main effect of likelihood
variance, F(2, 14)¼ 34.21, p , 0.0001, and an
interaction between the two factors, F(6, 42)¼ 2.84, p¼
0.02. Similarly, in a 4 (temporal bin) 3 3 (likelihood
variance) repeated measures ANOVA carried out over
participants’ weights in the narrow prior condition,
there was a marginal main effect of temporal bin, F(3,
21)¼ 2.87, p¼ 0.06, a main effect of likelihood
variance, F(2, 14)¼ 17.72, p , 0.001, and a marginal
interaction between the two factors, F(6, 42)¼ 2.30, p¼
0.052. Finally, participants assigned a smaller weight to
the likelihood, particularly in the high likelihood
variance condition, when the target was drawn from
the narrow prior, than when the target was drawn from
the broad prior. In a 4 (temporal bin) 3 2 (prior
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variance) repeated measures ANOVA carried out over
participants’ weights in the high likelihood variance
condition, there was a main effect of temporal bin, F(3,
21)¼ 5.55, p , 0.001, and a main effect of prior
variance, F(1, 7) ¼ 7.89, p ¼ 0.026. These findings
therefore represent a replication of our results from
Experiment 1. To further confirm that these results
replicate the results from Experiment 1, we carried out
a 2 (experiment) 3 4 (temporal bin) 3 3 (likelihood
variance) mixed ANOVA, with experiment as a
between-participants factor and temporal bin and
likelihood variance as within-participant factors, over
participants’ weights in both the broad and narrow
prior conditions. In each case, we found no interaction
between experiment and any other factor (all ps .
0.17).

Importantly, in the conditions in which no sensory
information was available (i.e., no cluster of dots was
presented), we found that within the first temporal bin
(the first 100 of the 400 prior-only trials) participants’
estimates of the target location were on average
indistinguishable from the true prior mean locations
(plus or minus motor noise estimated from the low
likelihood variance conditions; broad prior: t7¼ 1.73, p
¼ 0.13; narrow prior: t7 ¼ 1.24, p ¼ 0.25). Participants
were therefore able to rapidly learn the prior means
even when presented with a complex generative model
(Figure 5), extending results from previous work
examining such behavior in the presence of simpler
generative models. It is important to note, however,
that in the conditions where sensory information was
available, which were randomly interleaved with the
prior-only conditions, participants’ weights continue to
change throughout the experiment (Figure 4). This

Figure 4. Weights assigned to the centroid of the sensory information in Experiment 2. As in Experiment 1, participants in Experiment

2 relied less on the sensory information and more on the priors as the variance of the sensory information increased, in line with the

predictions of Bayes-optimal behavior. This was true for both broad (A) and narrow (B) prior conditions, with the drop in the weight to

the sensory information being greater for the narrow prior condition than for the broad prior condition. Furthermore, for both prior

conditions, as variance increased, the drop in the weight to the sensory information was greater as participants gained more exposure

to the task. Each temporal bin again included 300 trials split between the two prior conditions, and the four bins of trials are depicted

in temporal order. Columns represent means and error bars represent SEM across participants.

Figure 5. Mean response location in the absence of sensory

information. Participants in Experiment 2 rapidly learned the

true prior mean for both the broad (top) and narrow prior

conditions (bottom). Participants’ mean response location in

the trials in which no sensory information was available was

indistinguishable from the true prior means, plus or minus

motor noise, within the first temporal bin. For illustrative

purposes, the y-axis represents the mean deviation from the

true mean in each prior condition. Each temporal bin included

100 trials split between the two prior conditions, and the four

bins of trials are depicted in temporal order. Columns represent

means and error bars represent SEM across participants.
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pattern of results suggests that, while participants learn
the prior means very rapidly, it takes much more
exposure to learn the relative variances of the two prior
distributions. Moreover, the finding that participants
learn the true prior means within the first temporal bin,
but their weights continue to change throughout the
experiment, further contradicts the predictions of
Model 2. If participants were only learning and using
the prior means, and not the relative variances of the
prior distributions (as predicted by Model 2), then we
would expect to see no change in participants’ weights
beyond the first temporal bin, since they show no
change in their knowledge of the prior means beyond
this bin (as determined by performance in the no-
sensory information condition).

Taken together, the results from Experiments 1 and
2 provide compelling evidence in support of the
hypothesis that observers in our study learn and utilize
complex generative models, in combination with
sensory information, in a manner that is consistent
with the predictions of Bayes-optimal behavior (i.e.,
Model 3).

General discussion

Across two experiments, we used a spatial localiza-
tion task to examine the computational mechanisms
employed by human observers when faced with tasks
involving complex generative models. We obtained
compelling evidence in support of the hypothesis that
human observers learn such complex generative mod-
els, and integrate this learned knowledge with uncertain
sensory information in a manner consistent with the
predictions of Bayes-optimal behavior. At the outset of
our experiments, participants’ behavior was primarily
driven by sensory information (i.e., the centroid of the
cluster of dots) and we saw no difference in the weights
assigned to sensory information across likelihood (i.e.,
differences in cluster variance) and prior conditions.
However, by the end of both experiments (i.e., the final
temporal bin), when participants had gained extensive
exposure to the complex generative model, they
assigned a significantly lower weight to the sensory
information (and thus a greater weight to the mean of
the trial-specific prior distribution) as the sensory
information decreased in reliability, in a manner
consistent with the predictions of the Bayesian model.
This pattern of performance rules out alternative
suboptimal strategies that could be used in this task.
Furthermore, extending prior findings with simple
generative models (Berniker et al., 2010), we found that
even when faced with a complex generative model,
participants were able to rapidly learn the true prior
means based on just a few hundred trials of exposure,

but it took them much longer to learn and use the
relative variances of the prior distributions. To our
knowledge, this is the first study that has explicitly
examined the extent to which human observers behave
in a manner consistent with the predictions of the
Bayesian model in tasks that have the degree of
complexity approaching that encountered in their
natural environment; that is, tasks involving multiple,
randomly interleaved levels of sensory uncertainty and
where the stimulus of interest is drawn from a mixture
distribution over multiple, randomly interleaved envi-
ronmental causes.

In addition to demonstrating that our participants’
behavior is consistent with the predictions of the
Bayesian model, we can also evaluate the extent to
which participants’ empirical weights approach the
ideal weights that would be assigned by a Bayes-
optimal observer, given the uncertainty implicit in the
two sources of information available to the participant:
the noisy sensory information and the learned knowl-
edge of the location-contingent generative model. How
close are our participants’ weights to this quantitative
ideal? In order to accurately compute these ideal
weights, however, we would need to characterize the
uncertainty implicit in participants’ internal estimates
of the prior and likelihood distributions, thereby
ensuring that the ideal observer has access to the same
quality of information as our participants. Since
participants were presented with multiple samples from
the likelihood distribution (i.e., the cloud of dots) on
every trial, the uncertainty implicit in it is computable
by the participant on a trial-by-trial basis (see Sato &
Kording, 2014, for a scenario in which this was not
true). It is therefore reasonable to approximate
participants’ internal estimate of likelihood uncertainty
by the true uncertainty implicit in the distributions used
to generate the cloud of dots on each trial (i.e., the
standard deviation of the dot-cloud distribution
divided by the square root of the number of dots).

Approximating the uncertainty implicit in partici-
pant’s internal estimates of the prior distributions is a
much more challenging endeavor. Participants’ internal
estimates of the prior distributions could only be
obtained by integrating across trials, since feedback on
each trial only provided a single sample from the trial-
specific prior distribution. Thus, we would expect
participants’ internal estimates of the true prior
distributions to evolve over the course of the experi-
ment, and only when participants had received enough
samples from the underlying distributions to attain
perfect knowledge of the prior distributions could we
approximate their internal estimates of these distribu-
tions with the true prior distributions. The challenge
stems from the fact that we had no independent way of
assaying participants’ internal estimates of the prior
distributions, and thereby determining at what point in
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the experiment a given participant had received enough
samples to attain such perfect knowledge.

Despite the foregoing limitation, we can compute
the ideal weights that a Bayes-optimal observer, who
is assumed to have perfect knowledge of the prior
distributions, might assign to the sensory information
in Experiment 2, and evaluate the extent to which
participants’ weights approach this quantitative ideal.
The ideal observer in this analysis is therefore assumed
to have knowledge about the underlying target
distributions that is an upper bound on the knowledge
that participants could learn during the course of the
experiment. Comparing the ideal weights computed in
this manner to participants’ empirical weights across
prior and likelihood conditions, we found that their
empirical weights moved closer to the ideal weights as
a function of exposure to the task. Furthermore, by
the final temporal bin, which represented the most
exposure to the underlying generative model, partic-
ipants’ weights showed the same qualitative trends as
the ideal observer, but they differed quantitatively
from the ideal weights in a manner that interacted
with both prior and likelihood variance. Specifically,
while participants’ weights matched the ideal weights
in the low likelihood variance condition, they assigned
a greater weight to the sensory information, in
comparison to the ideal observer, in the medium and
high likelihood variance conditions, with the differ-
ence increasing with an increase in likelihood variance
(i.e., the change in participants’ weights as a function
of likelihood variance was shallower than that
predicted by the ideal observer; see Tassinari et al.,
2006, for a similar finding). Indeed, this difference was
also greater for the narrow prior condition, than for
the broad prior condition (Supplementary Fig. S1).
This pattern of results suggests that, even by the end
of Experiment 2, participants may not have received
enough exposure to samples from the underlying
target distributions to attain the perfect knowledge of
the prior distributions assumed by the ideal observer
in this analysis. Indeed, if participants began the
experiment with flat internal estimates for the priors
(which is reasonable given that they did not have a
priori reason to prefer one location on the display to
another), and sharpened these internal estimates as a
result of exposure, we would expect to see exactly this
pattern of results. Consistent with this hypothesis, in a
follow-up experiment (see supplementary informa-
tion), we found that when participants were provided
with double the number of samples from each prior
distribution, their weights moved significantly closer
to the ideal weights (Supplementary Fig. S2). Taken
together, these results suggest that, when faced with
tasks involving such complex generative models, the
rate at which human observers learn the generative
model is dramatically slower than that observed

previously with simple generative models. This slow-
down is most likely due to the significantly increased
complexity involved in tracking and learning the
complex generative model.

Going forward, a logical next step to further
understanding of the computational mechanisms used
by human observers to learn from and use complex
generative models, would be to introduce uncertainty in
the environmental causes that make up the mixture
components of the generative model. In the current
study, as a first step, we made the environmental
distribution perfectly location contingent (i.e., predict-
able), with one Gaussian distribution being centered on
the left of the display and the other being centered on
the right of the display. As a next step, including
uncertainty with regard to the underlying mixture
component that the target on each trial is drawn from
(i.e., removing the location contingency) would intro-
duce further complexity in the generative model and
make the task even more representative of real-world
tasks. Ideal behavior in such tasks can still be modeled
in the Bayesian framework by considering a hierarchi-
cal process, where the ideal observer first solves the
‘‘causal inference’’ problem (what underlying cause
produced the sample; Kayser & Shams, 2015; Knill,
2007; Rohe & Noppeney, 2015; Shams & Beierholm,
2010) and then uses the estimated sample to (a) build a
model of the underlying distribution for the inferred
cause, and (b) integrate that inferred causal distribution
with sensory information on subsequent trials to finally
infer the target location.

Keywords: learning complex models, Bayesian mod-
eling, spatial localization
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