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Abstract

The growing software content in various battery-driven
embedded systems has led to significant interest in technolo-
gies for energy-efficient embedded software. While low-
energy software research has, in the past, focused on energy
optimization at the instruction and source-code levels, ap-
proaches targeted at a higher software level are beginning
to gain attention.

In this work, we propose a methodology to refine a
control-data flow diagram (CDFD) model of an embed-
ded software program into an energy-efficient multi-process
software architecture graph (SAG). Our starting represen-
tation, the CDFD, is capable of modeling data-dependent
control flow. Energy efficiency is achieved by reducing the
energy wastage due to context switches and inter-process
communications (IPCs). Conditionally-unused computa-
tional operations, and their corresponding energy, are also
avoided by a condition-aware static scheduler. Finally,
code generation is performed from the energy-efficient SAG
to produce a multi-process program that implements the
original CDFD specification. Experimental results estab-
lish the efficacy of the proposed approach.

1 Introduction
The conventional approach to energy optimization of

embedded software has been to adapt various stages of the
software compilation process to model and minimize en-
ergy consumption. A complementary body of work at-
tempts to best utilize power saving features, such as shut-
down based power management and dynamic voltage scal-
ing, that are available in modern embedded processors.
Both of these approaches have been widely researched. En-
ergy optimization at the software architecture level is an
emerging approach that is complementary to conventional
low-power software techniques, while promising significant
energy savings. In this paper, we model an OS-driven multi-
process embedded software at the behavior level using the
CDFD. We also present a comprehensive software synthe-
sis methodology that synthesizes an energy-efficient SAG
from the CDFD, and performs static scheduling and code
generation for the synthesized SAG. The proposed CDFD is
capable of modeling data-dependent control flow behavior.
Our condition-aware static scheduling approach also saves
energy by avoiding conditionally-unused computational op-
erations.
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Related work
Low-energy software research has gained momentum in

the last decade. At the instruction level, the ideas generally
center around low-energy adaptation of one or more steps
in the compilation process, including transformations, in-
struction selection, register assignment, instruction schedul-
ing, etc. [1, 2]. At one step above the instruction level, en-
ergy impact of source code transformations has been stud-
ied in [3, 4]. The synthesis of low-energy software architec-
ture, and the corresponding program code, starting from a
concurrent behavioral representation, however, has not been
investigated so far. Therefore, we focus on this area in this
work.

Multi-threaded software synthesis targeted towards a
dynamically scheduled environment has been investigated
in [5]. It uses a software synthesis script that translates
a specification based on a constraint graph into a set of
threads, and performs static scheduling within the threads.
In the reactive system domain, efficient compilers have been
built for different programming languages based on the syn-
chronous/reactive model of computation. Software synthe-
sis for reactive systems has also been investigated in [6]
as part of the hardware-software co-design tool called PO-
LIS. In another regime of software synthesis, compile-time
scheduling of Petri-net models have been proposed in [7].
Software synthesis based on free-choice Petri nets, an ex-
tension of Petri nets to include data-dependent control, has
been investigated in [8, 9].

The rest of the paper is structured as follows. In Sec-
tion 2, we discuss the motivation for our work. This is
followed by a detailed presentation of our energy-aware
software synthesis methodology in Section 3. Section 4
presents the experimental results. In Section 5, we give the
conclusions.

2 Motivation
In this section, we address a fundamental question that

leads to the motivation of our work. The question is: how
does energy-aware software architecture synthesis help pro-
duce a multi-process software program with an energy-
efficient software architecture?

Consider a behavioral specification of a software sub-
system as shown in Fig. 1. The circles represent the actors,
or the data transformation functions. As in [10] or any other
data flow model, an actor fires its outputs when all its inputs
are available. The empty rectangular boxes in Fig. 1 rep-
resent passive devices, which are devices that produce data
tokens on request. The time given next to a device is its
response time. The response time of a passive device is the
time the device requires to produce the data after a request is
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made. For example, dev1 in Fig. 1 has a response time rang-
ing from ������� to �����	� . Furthermore, we assume that the
computation delay of the actors is insignificant compared to
the device response time.

Given that there are slow passive devices in the behav-
ioral specification, we should not generate a single-process
implementation of this sub-system because doing so will
unnecessarily delay the activation of actor 
�� . Instead, we
require at least two software processes so that actors 
�� and

�
 are mapped to separate software processes. The other
actors ( 
�� and 
�� ) can be mapped to either process. Some
combinations are: (1) ��
�����
�����
�����
�
�� , (2) ��
�����
�����
�
���
���� ,
(3) ��
�����
�
���
�����
���� , etc., where, for example, combination
(1) implies that 
�� , 
�� and 
�� are in one process, and 
�

in another. Clearly, if different amounts of data are passed
along different edges, some of the above combinations will
be more energy-efficient than others. A software archi-
tecture synthesis methodology is energy-aware when it at-
tempts to look for the most energy-efficient combination
while exploring all the combinations that are valid. A valid
combination, like those listed above, does not incur unnec-
essary delay.

3 A Methodology for Energy-aware Software
Synthesis

In this section, we describe our methodology in detail.
A flow diagram for the overall software synthesis

methodology is shown in Fig. 2. The objective of this
methodology is to generate a multi-process software pro-
gram with an energy-efficient software architecture. The
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Figure 3. A CDFD representation of an em-
bedded software specification

key components of the methodology include: (1) a concur-
rent behavioral representation of the embedded software,
(2) a representation for the scheduled multi-process soft-
ware architecture that is readily convertible to program
code, (3) an approach to convert the behavioral represen-
tation into the multi-process software architecture, and (4)
a program code generation step. These key components are
described separately in the following subsections.
3.1 The CDFD model

The CDFD model is a hybrid of the data flow diagram
(DFD) [11] and token flow models [10]. An example of the
CDFD representation of an embedded software is shown in
Fig. 3. Five types of entities are featured in the CDFD: (i)
active devices, (ii) passive devices, (iii) computation actors,
(iv) split actors, and (v) merge actors.

An active device, denoted by a crossed rectangular box,
initiates data transfer spontaneously. An example of an ac-
tive device is a timer. For the purpose of considering only
the average behavior, we use an average activation period
to model data token generation of an active device. Passive
devices are denoted by empty rectangular boxes. They do
not initiate data transfer. Instead, they wait for the actors
(computation, split or merge) to initiate data transfer. When
an actor requests a data token from a passive device, the
response time of the passive device is the time it takes to
produce the data token.

The computation actors in the CDFD are denoted by cir-
cles in Fig. 3. Basically, once scheduled, a computation
actor in the CDFD makes a data token request to all its in-
puts, and waits for the availability of all its input data to-
kens before it fires its outputs. For example, when actor 
��
in Fig. 3 is scheduled, it makes data token requests to actor

�� and device ��� ��� , waits for the data token to be available,
and fires. Once it fires, its output token is available to actor
�!� .

The split and merge actors are both denoted by circles
with cross-bars in Fig. 3. A split actor has a Boolean input
from the side, and a normal input from the top. It routes the
input to the left output if the Boolean input is true, and to the
right output if the Boolean input is false, e.g., actor ��� . A
merge actor also has a Boolean input from the side, but two
normal inputs from the top. It routes either the left or the
right input to the output based on the value of the Boolean
input, e.g., actor �"� .
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3.2 The SAG model
There are two types of entities in an SAG: components

and connectors. The notion of components is further refined
to consist of two types: computation and device compo-
nents. Each computation component hosts a set of statically
scheduled (totally ordered) actors. A device component, on
the other hand, only hosts a single device, active or passive.
Connectors serve as the “glue” parts that connect the com-
ponents together. There are also two types of connectors:
communication and device-IO. A communication connec-
tor links two computation components, whereas a device-
IO connector links a device component to a computation
component.

The SAG model as a whole has been conceptualized to
emulate the operation of an OS-driven multi-process em-
bedded software. For example, the computation compo-
nents are synthesized into software processes in an OS-
driven run-time environment, the communication connec-
tors are mapped to the OS-supported IPC channels, and the
device-IO connectors are mapped to the OS-supported de-
vice drivers. The device components, in the same manner,
can be mapped to device emulation code if needed. Since
the program code for the connectors is part of the OS in
an OS-driven software, the program code generated for the
computation components interfaces with the connectors by
making system calls.

The operation of the computation components, or soft-
ware processes, is modeled by two complementary opera-
tional models. One is an extended directed acyclic graph
(exDAG), the other is a state diagram. The nodes in the
exDAG have the same behavior as the actors in the CDFD.
These are computation nodes, split nodes, and merge nodes.
However, no device is defined within the exDAG since de-
vices are modeled within the device components. IN and
OUT nodes are defined within the exDAG as the interface
between the exDAG nodes and other entities. The state di-
agram in a computation component, on the other hand, is
a static schedule of the operation flow represented by the
exDAG. Static scheduling of an exDAG into a state diagram
can be performed based on a topological sort of the exDAG.
This static scheduling algorithm is presented in Section 3.4.
3.3 The partial scheduler

The process of converting a CDFD into an SAG is called
partial scheduling because an SAG is essentially a partially
ordered CDFD in the sense that the actors within a software
process are statically (totally) ordered whereas the ordering
between actors from different software processes is not de-
termined until run-time.

Scheduling (partially) a CDFD consists of two major
steps. The first step, called software architecture synthesis,
divides the CDFD into a set of non-overlapping subgraphs,
each of which is separately mapped to a software process.
The second step performs static scheduling within each pro-
cess. This two-step procedure is illustrated in Fig. 4 using
the CDFD example from Fig. 3. The input to the software
architecture synthesis step is a CDFD shown on the left.
The output from the software architecture synthesis step is
an SAG without the state diagram, as shown on the right of
Fig. 4. Within each process of an SAG is an exDAG, which
is a subgraph of the original CDFD. In Fig. 4, the processes
are labeled ��������� to ������� 
 , whereas the connectors (com-
munication or device-IO) are numbered ��� to ����� . Edges
between processes and connectors indicate the utilization
relationship. For example, process �	�
��� � is connected to
connector ��� by an edge since it utilizes �
� to pass data to
process �	�
��� 
 . The devices are kept intact, with the same
graphical notations as those in the CDFD. After the soft-
ware architecture synthesis step, the SAG is subjected to
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static scheduling so that the state diagram within each soft-
ware process is derived, as discussed in Section 3.2.
3.4 Condition-aware static scheduling

Scheduling an exDAG begins with annotating the nodes
within the exDAG with the conditions under which the
nodes should be scheduled. To illustrate this point, we
use the example shown in Fig. 5(a). The vertical rectan-
gles in the figure represent IN or OUT nodes, which are
the interfaces the exDAG has with the other processes. In
this exDAG, there is a Boolean variable ��� controlling both
split actor ��� and merge actor �"� . By definition, node 
��
should only receive a token when ��� is true, whereas node

�� should only receive a token when ��� is false. There-
fore, node 
�� should be annotated with ��� as its conditional
readiness (CRN), whereas node 
�� ’s CRN is ��� . A slightly
more sophisticated example is shown in Fig. 5(b). In this
example, there is also a conditional variable � . All the nodes
are annotated with their CRNs. Although node 
�
 is not
directly downstream from the split node, its CRN is never-
theless � . In other words, this node need not be scheduled
unless � evaluates to true.

The overall readiness (RN) of a node is the conjunction
of its CRN and its availability readiness (ARN). A node’s
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ARN is a flag showing the availability of all its incoming
data tokens. For computation, split and OUT nodes, all the
inputs must be present before the ARN is flipped from false
to true. For a merge node, only the controlling input and
one of its normal inputs are required to be present to have its
ARN flipped to true. The IN nodes, on the other hand, have
their ARN initialized to true since they take inputs from out-
side the process boundary.

A node is ready to be scheduled if and only if its RN
is true. For the example in Fig. 5(b), node 
�
 need not be
scheduled at all if � is true, even if its input token is made
available after node 
�� has fired. As one can see, successful
and correct computation of the CRN has helped avoid an
unnecessary computation. In both the examples in Fig. 5,
the CRN of the nodes can be derived by simple reasoning
(a systematic procedure is discussed later). For example,
in Fig. 5(b), since node 
�� is directly downstream of the
right output of the split node, we can first determine that
its CRN is � . Now, there is no reason to schedule 
�
 if
we know that 
�� would not be scheduled, since 
�
 ’s only
output goes to 
�� . Therefore, 
�
 can also inherit the CRN
of 
�� . Given this CRN information, the static scheduler
should be intelligent enough to first determine the value of
� before scheduling 
�
 and 
�� . That is, knowing that the
readiness of 
�
 and 
�� depends on the value of � , the static
scheduler should first determine the value of � before de-
ciding whether to schedule 
�
 and 
�� . Such a static sched-
uler is therefore condition-aware since it is aware of the
conditionally-unused operations.

3.5 Energy-aware software architecture synthesis
The software architecture synthesis starts with the ini-

tial mapping step. In this step, the initial SAG is generated
by performing a one-to-one mapping from the CDFD to the
SAG. That is, for every actor in the CDFD, we create a pro-
cess to only host the actor. Similarly, we create an SAG
device component for every device in the CDFD. The same
is true for the SAG connectors, which are created by a di-
rect mapping from the edges in the CDFD. The one-to-one
mapping makes sure that the initial SAG is valid, as defined
in Section 2.

Conversion of the initial SAG into an energy-efficient
SAG is done iteratively through a series of software archi-
tectural transformations. Essentially, these software archi-
tectural transformations seek to reduce the energy consump-
tion by reducing energy wastage due to IPC and context
switches. A set of software architectural transformations is
illustrated in Fig. 6. In this figure, all the exDAGs shown
within the process boundaries do not represent any actual
exDAGs. They are there just to illustrate the idea. Also, the
graphical notations used in this figure are the same as those
in Fig. 4.

Evaluation of the energy gain is done with the help of the
OS energy macro-models [12]. An OS energy macro-model
is a mathematical function (e.g., an equation) expressing
the relationship between the energy consumption of an OS
primitive (e.g., a system call) and some predefined parame-
ters. It is derived by fitting a regression model template to
the energy consumption data of an OS primitive. The en-
ergy data can be collected by low-level energy simulation
techniques, or by direct power measurement. Examples of
the OS energy macro-models are: (1) OS context-switch en-
ergy, ��������� � ��� � � (nJ) for an arm-linux OS, and (2) IPC
energy, �
	��
	�� ��������� ��� ��� ��� ����� (nJ) for reading � bytes
in the pipe read system call in an arm-linux OS.

The energy effects of the software architectural transfor-
mations are also illustrated in Fig. 6. These energy effects
are expressed in terms of the OS energy macro-models. For
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Figure 6. A set of software architectural trans-
formations

example, the energy effect of the sequential process merg-
ing transformation is given by: ����� �!� �
	 � �"���$# �
	 �%�
� ����� # ����� , where #&�
	 � is the number of times the IPC is in-
voked, and #������ is the number of times a context switch
occurs.

4 Experimental Results
As a proof of concept, we built a software synthe-

sis framework based on our proposed methodology. The
framework takes as input a CDFD specification and gener-
ates prototype C code for fully parallel and energy-efficient
software architectures. In order to verify the correctness of
our framework and also of the generated C code, we con-
ducted experiments on a number of concurrent behaviors
specified in the CDFD format. These CDFDs were designed
to mimic the behaviors of some typical embedded systems.
They include: Audio ctrl2 – audio source selection (CD
or tape) and amplification, Classic – a synthetic split-
and-merge behavior, Downsamp – a behavior emulating
the down-sampling of a signal, Stereo – a behavior that
splits a video signal and writes to different output devices,
Synthetic2 – another synthetic behavior, Webserve –
a behavior designed to mimic the operation of a web-server,
Aware – a situational awareness system, and ATR – a be-
havior similar to the processing steps involved in an auto-
matic target recognition system.

Processing of the CDFDs and synthesis of the program
code are performed on an Intel Pentium III 1266MHz ma-
chine running Linux OS. The statistics pertaining to the use
of this software synthesis framework are shown in Table 1.
In this table, #lines in columns 2, 3 and 4 refer to the num-
ber of lines in the CDFD file, the C code of the fully par-
allel software architecture, and the C code for the energy-
optimized software architecture, respectively. Column 5
shows the amount of CPU time taken by the framework to
perform the synthesis.
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Table 1. Statistics pertaining to the use of the software synthesis framework
Examples CDFD #lines Fully Parallel C #lines Opt. C #lines Syn. CPU time (s)

Audio ctrl2 ��� ����� ����	 
�� 
��
Classic � ����
 ��
�� ��� ���
Downsamp 	 ����� 
���
 ��� ���
Stereo ��� ����
 ����� 
�� 
�


Synthetic2 ��� ��	�� ����� ��� 	��
Webserve � 
���
 ��	�� ��� 
��
Aware ��� ����� ��
�� ��� ��	
ATR 	 ����� 
�	�� ��� ���

�

�

�

�

�
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� �
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Figure 7. Experimental results showing the
energy consumption of the generated C code

We also look at the energy consumption difference be-
tween the fully parallel and energy-efficient software archi-
tectures. The energy consumption results were obtained by
low-level energy simulation of the generated C code. The
publicly available simulator we used [13] features an Intel
StrongARM target processor and is capable of simulating
both the application program and Linux OS (the arm-linux)
as a combined image. These energy results are reported in
Fig. 7 as a high-low chart. The top of each stick indicates
the energy consumption of the fully parallel software archi-
tecture, whereas the bottom of the stick indicates the energy
consumption of the energy-optimized software architecture.
The average energy reduction between these two extremes
is 
�� � ��� . It should be noted that there is no performance
degradation from the fully parallel software architecture to
the energy-efficient one, since our energy-aware synthesis
framework merely reduces the energy consumption by re-
ducing energy wastage due to IPCs and context switches. It
is also obvious from this chart that the leeway available for
software architectural energy optimization is significant.

5 Conclusions
In this paper, we proposed a unified concurrent behav-

ioral representation for high-level modeling of embedded
software. The behavioral representation, called the CDFD,
models the control/data flow behavior as well as interactions
of the embedded software with the hardware devices. We
have also proposed a methodology to synthesize a CDFD
representation of an embedded software into an actual pro-
gram code with an energy-efficient software architecture.

To demonstrate the applicability of our software syn-
thesis methodology, we built a software synthesis frame-
work based on the methodology. We also conducted exper-
iments on a number of concurrent behaviors, specified as a
CDFD, to verify its correctness. The experimental results

also showed that the leeway for software architectural en-
ergy optimization is significant. We believe our software
synthesis framework will be useful to designers for making
a quick energy consumption evaluation of their designed be-
haviors.
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