Predicting Serializability Violations: SMT-based Search vs. DPOR-based Search

Arnab Sinha, Sharad Malik, Princeton University

Resilient Systems, Task 5.5.1

Motivation
- > 69% of concurrency bugs are atomicity violations.
- detected by checking for conflict-serializability.
- Checking alternate interleavings of a given trace (Predictive Analysis) is a compromise between formal verification and monitoring.
- For predictive analysis, we can efficiently bound the interleaving search space using a trace slice (Trace Atomicity Segment – TAS) in practice (MEMOCODE’11).
- This work compares explicit (Dynamic Partial Order Reduction (DPOR)) and implicit (SMT) techniques for search-space exploration.

An Example
Unserializable and feasible interleaving
Unserializable and infeasible interleaving
Almost View Preserving (AVP) Interleavings
Original serializable trace
Unserializable and infeasible interleaving
View preserving interleaving
Non-view preserving interleaving

Key Result: No error-path for the atomic block can contain events outside the TAS. This limits the set of interleavings considered.

Trace Atomicity Segment (TAS)
- Events above (below) the upper (lower) frontier must happen before (after) the atomic block in all AVP interleavings.
- Frontiers bound the Trace Atomicity Segment (TAS).

Pruning in Dynamic Partial Order Reduction (DPOR)
- A marker set for the last transition (t_{lastInAB}) from the atomic region in the prefix helps pruning the interleavings.
- Tuning the parameter CSmax can help in carrying out localized search.

SMT Formulation
\[\phi(x) = \bigvee_{i \in \mathcal{V}(\mathcal{A})} \text{edgeFrom}(\mathcal{A}, i, v) \]
\[\text{edgeFrom}(\mathcal{A}, i, v) = \left(\text{from}(i, v) \land (r(i) < r(v)) \right) \lor \left(i \in \mathcal{V}(\mathcal{A}) \land (r(i) < r(v)) \right) \]

Results
Limited to our data-set,
(1) If coupling strength and relative TAS size indirectly proportional, TAS+DPOR is more effective since less interleavings to explore, and,
(2) Little above the curve TAS+SMT is more effective (more interleavings).
(3) Beyond a certain threshold, SMT-solvers give up.

Contributions
- Several major contributions in predictive analysis for atomicity checking:
 - Tuned DPOR technique to predict serializability violations among AVP interleavings.
 - Proposed SMT-based encoding for predicting serializability violations with any number of threads and variables for the first time.
 - Identified some characteristics of instances that can be used to select between them.

Acknowledgements
The authors acknowledge the support of the Gigascale Systems Research Center. They also thank their collaborators: Dr. Chao Wang and Dr. Aarti Gupta.

Portability
Limited to our data-set,
(1) If coupling strength and relative TAS size indirectly proportional, TAS+DPOR is more effective since less interleavings to explore, and,
(2) Little above the curve TAS+SMT is more effective (more interleavings).
(3) Beyond a certain threshold, SMT-solvers give up.