GSRC réne

Using Concurrency to Check Concurrency:

Arnab Sinha, Sharad Malik, Princeton University

Resilient System Design, Task 1.2.2.3

Checking Serializability in Software Transactional Memory

GSRC Annual
Symposium

Sep 3-4, 2009

Abstract

Software transactional memory systems (STM) are very
complex. Attempts have been made to formally verify STMs, but these
are limited in the scale of systems they can handle and generally verify
only a model of the system, and not the actual system.

We present an alternate attack on checking the correctness of
an STM implementation by verifying the execution runs of an STM using
a checker that runs in parallel with the transaction memory system. This
will be needed anyway given the increasing likelihood of dynamic errors
due to particle hits (soft errors) and increasing fragility of nano-scale
devices. These errors can only be detected at runtime.

We have implemented concurrent serializability checking in the
Rochester Software Transactional Memory (RSTM) system. The
overhead of concurrent checking is a strong function of the transaction
length. For long (short) transactions this is negligible (significant).

init
a=b=0
: T1reads (a, b)=(0, 1).
// Trans T1 ans "
beqin:txans [/ Teans 12 T2 writes (a, b) = (0, 1).
g | zeac =
= be‘?i“i““‘s Hence, in effect, T1 follows T2.
write bi=1;
end_trans Therefore, this execution trace
read bi is serializable!
end_trans
T1reads (a, b)=(0, 1).
R /) Trans 12 T2 writes (a, b) = (1, 1).
// Trans T1 Case1: T1<T2
begin_trans T1 should have read (0, 0).
% read a; begin_trans C .
= write a:=1; ase2: T2<T1
write br=1; T1 should have read (1, 1).
‘ezdtb' end_trans Therefore, this execution
et trace is not serializable!

Modeling Serializability as
Graph Problem

QVertices are the transactions.

Q Edges represent the conflicting shared data
accesses (e.g. RAW, WAR and WAW).

Q Edge A - B, if trans. A accesses before trans B.

RAW
No cycle > Serializable execution

Cycle exists > Therefore, this
execution trace is not serializable!

writer

WAR

RAW

writer

Serializability and DSR

(Interchange Serializable [Sethi '82])

—> Value order

—> Serializability order

reader writer

reader

writer

Taking actual time-order, we get DSR.

' writer 2 writer ! writer

reader

writer

writer reader

DSR s efficiently computable!

“Testing whether a history h is serializable (SR) is NP-complete” — ‘Serializability of Concurrent
Database Updates’, Christos H. Papadimitriou.

Challenges and Overview of the work

Challenges:

Q Minimizing performance overhead: Need for efficient validation
computation .

Q Bounding the DSR graph size: The DSR graph size is O(N?), (N = no. of
transactions).

reader

Construction of the graph

DSR
graph

‘ompaction of the
graph

—

Transaction threads Logging the “interesting” events

Graph thread

Overview:

Q Access Logging: Chronological logging of the critical events.

Q Graph construction and compaction: Logging, construction and
compaction of the graph — concurrent operations.

reader

Logging

Graph thread

Q Multiple producer (transaction-threads)
consumer (graph-thread) relationship.

Q Employment of private pair of buffers >
reduction of producers’ contention.

Q The transaction thread fills up one buffer
while graph-thread empties the other. When
done, buffers are swapped. Thus every access
does not need locking.

Transaction threads

co-EE,

Case 1: Vertex v commits with zero in-degree.

Rest of the.

graph

participate in a cycle, in the future.

Compaction Strategy:

T Em

recursively on committed children.

Timestamping

Requirements:
Q Unique value.
Q Monotonically increasing value.

Options:

Properties of RDTSC (an Intel Pentium instruction):
Q Guaranteed to return a unique value across all cores.
Q Monotonically increasing value.

Computation of LLC:

Q For each shared object o, there is a global counter g(o). For each thread there is a local

event counter /.

Q Timestamp /(A) is computed for shared access as follows:
I{A) — max(l(A),g(o) +1
a(o) i(4)

—

Q Read Timestamp Counter (RDTSC).
Q Lamport’s Logical Clock (LLC).

Case 2: Vertex v commits and in-degree(v) > 0.

Graph Compaction

Rest of the.

graph

On vertex commit, if criterion satisfied, delete vertex and its out-edges. Strategy is employed

. = committed vertex

Compaction Rule: Committed vertex with no incident edge can be deleted as it cannot

Results

3 sets of experiments:

Q Baseline experiments: Validation part turned off.

Q Only Logging: Critical events are logged but no graph.

Q Graph-Checking: Concurrent logging of events and graph checking.

RSTM Suite (Only Logging with LLC
timestamps)

RSTM Suite {full validation with LLC
timestamps)

o o
S0t L w

so ettt | | § [—
3 o0z Thread-3 3

= Thread-s
= hread -

g = il

Linkedist

Sedls LAUGee danise Couter ARIre CUCsche HaTave Coumer RiTiee

Access-set — Set of unique object-id’s
accessed.

Access-sets are of two kinds: reg(u), regular
accesses and inh(u), inherited accesses

An Example
reg(u;) = {2} reg(u,) = {2} reg(u;) = {2} reg(u,) = {2}
inh(u)={} inh{u)={ inhlus)={} inh{u) ={}

u, commits

regu,)={1} reg(u,)={1,2} reg(uy) = {1,2}

inh(u)={} inh{u;)={} inh(u,) = {1}
ﬂu,cnmmits
reg(u,) = {2} reg(u;) = {2} reg(u,) = {2}
inh{ug) = {1,2}

&

Self-loop
detected

u,commits uy csmmits

inh(uw= {1,2]

PRI

Code for Synthetic Benchmark:

BEGIN_TRANSACTION
0bj_id := rand() % no_of objects;)
stm: :wr_ptr<Synthetic> wr(0bjList[obj_id]); Inferences:

@l Q LLC is better than RDTSC for timestamping.
wr->s0t_valus((sr->got_value(wr)+1), wr);
Juhile(i<loop_count) ;

END_TRANSACTION Q For short transactions the overhead is

significant. Application is in debugging.

K (full
with LLC timestamps)

1 Q For long transactions the overhead is

ER oot minimum. Application is in continuous
g os mioos-count-10 checking.

Lo e

3 0¢ - miooacount 100

H

5 o2 L miooocoun-10000

1 10 10 L0 10000

No. of Objects.

