
My Stint at Microsoft Development Org.

I was employed as a software development engineer at Microsoft Corporation between September

2012 and May 2014 located at Redmond. This was my first experience working full-time for any

company (leaving out my prior internships) after I left graduate school. I am proud to have shipped

Windows 2012 R2 (and Windows 8.1) on October 2013. This was a tremendous learning experience for

me and an opportunity to see how a Fortune 100 company delivers enterprise scale software. In this

document, I attempt to summarize my experience of dealing with the people and process at

Microsoft development organization that I was part of. Anybody (and especially students since I was a

college hire) who aspire to join Microsoft someday, or someone plain curious about the Microsoft

culture, might find some interesting insights to learn from here. (Standard disclaimer: The content is

based on my own opinion/interpretation only and does not reflect any opinion of Microsoft.)

My Background: Since my first interaction with a computer, I am a loyal user of Microsoft products.

Back in 1994, when I first wrote a program for MS-DOS operating system in BASIC language I was

fascinated at the range of possibilities that can be displayed with the black-and-white PCs

(surprisingly, I never heard of the phrase “hello world” until I reached college in 2002). In those days,

we used to load the operating system from a floppy disk. It was still an exhilarating experience for a

ten year old kid. As time passed, I gradually grew up more comfortable in using Microsoft softwares.

Fortunately in 2007 when I was about to graduate from college, I was offered a software developer

job with Microsoft India Development Center located at Hyderabad, India. Despite the fabulous perks

of working for the multi-national company, I decided to pursue higher studies. By that time I made up

my mind to carry research work on Formal Verification due to the inspiration I had drawn from my

undergraduate adviser and a couple of summer internships at University of Aachen, Germany. On

June 27, 2007 I left my home country for Princeton University enrolled in the PhD program declining

Microsoft’s offer.

Traditionally, formal verification research was mostly focused on electronic design automation given

the substantial funding from the largest silicon chip-maker company Intel. During my PhD, however, I

chose to work on topics related to multi-threaded software formal verification. I made this deliberate

switch to software partly due to the opportunities and promises that software presented during

post-iPhone era. When I was in graduate school, smartphones started occupying people’s pockets

and everybody were writing apps for them. Cloud businesses of Amazon and Google were soaring. I

thought to myself, I better be working on software related topics unless I want my research area to be

irrelevant when I graduate. Around 2012, I realized that a by-product of ‘mobile-first, cloud-first’

(borrowing from Satya Nadella’s mantra) era is large sets of data. And people who can infer

interesting business insights from those data are going to be the rock-stars of the tech world. With

little background in machine-learning or statistics, I knew I was not prepared for that kind of job

(these roles in the industry are often referred to as data-scientists) right away. I did informational

interviews with several people in the industry. In one of those info interviews, a researcher from IBM

told me that I can probably slide into that role with either an internship or a relevant experience in a

“cousin” technology. The option of internship was not on the table for me. Moreover, I thought Cloud

based technologies are close ‘cousins’ and is a suitable candidate for making a transition. Although I

interned at Intel and Synopsys (that writes software for companies like Intel), I knew that I shall be

looking for jobs in cloud infrastructure based companies. At this point, I was offered a developer

position in the CloudOS Infrastructure team within Windows Server division at Microsoft. I wanted to

work for backend infrastructure teams where I thought I would get an opportunity to apply my

knowledge of concurrency and distributed computing. (And boy, it had ‘cloud’ in its name!) So I

accepted the offer.

What is an Org?: Among the few things that struck me during the first month at Microsoft was its

strong chain of command within the development organizations or popularly known as “org” among

the engineers. I have worked at other companies before but they were either entirely or partly

research teams which worked mostly as a unit with much less visible external control. In Microsoft

dev (At Microsoft, ‘dev’ interchangeably refers either to development or developer) org it was

different. At Microsoft, engineers generally have one of three roles: Program Manager (PM) (one

who answers the ‘why’ and ‘what’), Software Development Engineer (SDE) (one who answers the

‘how’) and Software Development Engineer in Test (SDET) (one who verifies if ‘how’ addresses ‘why’

and ‘what’). Although, we all worked together in teams, the chain of command was different for each

role, e.g. in a team SDEs and SDETs report to different managers. In other words, at each level instead

of one manager, Microsoft has three managers, one from each role (three heads are better than one

in most cases anyway!). The rationale that I heard behind this was better management of resources

(yes engineers are referred to as resources in MS!). This is true since often a PM can be working in

more than one team simultaneously without having to report to multiple managers. These three

chains merge at the level of Executive Vice President (EVP). Satya Nadella was our EVP before he

became the CEO - I joined Microsoft as an SDE (or developer) in Windows Server and System Center.

What is Platform Software?: Microsoft started as an operating system company. In other words, it was

in the business of building platform. In the software world, there are several layers. The lower layers

interact either with the hardware or operating system. The upper layers run applications that users

interact with. To give an example, the Minesweeper game is an application that runs on top of

Windows operating system. The software layer that supports applications is generally referred to as a

platform. In this case Windows operating system is a platform. At Microsoft, I joined the Windows

Server division that builds such platform for running enterprise workloads. By enterprise, I meant big

companies such as Delta, Intel, Macys etc. All companies need an IT infrastructure to run commercial

applications (such as SAP - software that manages their inventory and personnel among other

things). Traditionally, this infrastructure comprised of physical servers managed by IT administrators

(or admins). However, due to cost and resource elasticity advantages, companies ‘rent’ virtual

machines managed by providers like Amazon and Microsoft. In our org, we built infrastructure within

Windows operating system to manage such large clusters of machine (either physical or virtual).

Building platform software is time consuming. It takes months if not years. For example,

development of Vista took almost five years and development of Windows 8 took about three years.

At the end of development work the software is ‘shipped’ or ‘released’ to customers. Many people

might ask why does it take so much time to build platform software? Here’s why in my

understanding. Microsoft followed a waterfall software engineering lifecycle model for a long long

time. Usually, development of a software has four main phases: planning, development, testing and

maintenance. Next I shall describe each phase as I have experienced it.

Phases of Building a Platform Software: During the planning phase, engineers brainstorm, survey

customers, build prototypes for scenarios/products/features. At Microsoft, there is generally no

dearth of new and cool ideas to work on. But the more important question that we ask ourselves is

how much value are we going to create in the next release for our customers. The way we measure

the value is by picking the right scenarios that we want to light up. One example of a scenario can be -

“In the next version, I (the customer) should be able to watch a video in my phone from where I left it

watching in my XBox console.” As one can understand from this example, that this scenario crosses

the boundary of products. We refer to this approach as Scenario Focused Engineering (SFE). Once we

zero down on the scenarios, we prioritize them depending on their business values. Next, we break it

down to sub-scenarios and then at the product/feature levels. The engineers are expected to

estimate the cost of developing a new feature. As it is extremely difficult to estimate accurately,

there is a notion called “T-shirt sizing”, namely bucketising the cost into four broad groups, namely

Extra-Large (XL), Large (L), Medium (M) and Small (S). Often engineers build prototypes to estimate

the cost. Besides, we also do risk analysis, that is, what are the chances of failing to deliver within

budgeted resources such as time and engineers. Risk associated with software development can be

manifold. For example, working on critical legacy components such as kernel can be considered

highly risky as many other components depend on it. Sometime a feature might need several other

new features (built by multiple teams that rarely meet) to work properly, which can be also

considered as a medium risk (more about it later). The testing can also be a challenge adding to the

risk. If the ratio of value vs. risk is low the project usually gets deprioritized. This exploration of

opportunities and choices, followed by conclusive decisions under consensus, takes several months.

Generally, PMs are very busy during this time, often found running between successive meetings in

the hallways. They also draft the functional specification of what needs to be built. This document

discusses the scope, value and impact of the new feature. Next phase is design and development of

the software.

At Microsoft, planning plays an important role everywhere since billions of dollars are always at

stake! Before an engineer starts writing production code, (s)he needs to write the design

specification. The developer lays out the technical details including, but not limited to, software

architecture diagrams, contracts between components, source code layout, dependencies on existing

software components and API additions/modifications. At the same time, test engineers start

designing and writing the specification for testing the piece of software. Once the specs are ready,

PM, devs and tests sign them off when all the open questions are answered. (Sometimes the

sign-offs are conditional too!) Coding at Microsoft is very much regimented. There are sprints of 4-6

weeks dedicated to feature development those are known as coding milestones. Developers have

tasks assigned against them such that each task can be done within 1-2 days. Once the code is written,

there is a streamlined process for checking it in. It must be reviewed by a fellow developer/test

engineer, known as code review. In my experience, code review is extremely necessary to ensure

quality (such as style issues) and discover nasty bugs (such as memory leaks and code that breaks

contracts) early enough. After code review, the change should pass the several tests including unit

tests and functional tests. In fact, in my org the mandate was to write unit test for every check-in that

covers at least 80% of the new code. Hence, unit test should always accompany a check-in that is

additive. These coding milestones can be brutal if coding estimates are off. Developers try to leave

some buffer for unforeseen events that I will describe next. In spite of all the good intentions, bugs

get checked in. At the end of each day, the system attempts to build (or compile) the entire product.

There are too many moving pieces in a complex beast such as an operating system and sometime

bugs can lead to compilation/build failures in the entire source code branch blocking others. These

incidents are referred to as ‘build breaks’. Build breaks affect all since without a valid build (think of

build as a timestamped snapshot of the product) the test automation framework won’t work. And for

the same reason, it creates lot of noise in the mailbox too. Somebody once jokingly told me, if you

want to be (un)popular, just break the build. However, testing is not totally done yet.

Developers run tests to ensure no obvious bug gets checked in. But bugs can be of several

complexities. The product/feature must also behave properly in end-to-end scenarios since

developers make assumptions about the external components which may be incorrect. The

product/feature should also pass stress tests since most platforms run forever. Stress tests ensure

the software robustness under unconducive environments. Examples of such scenarios are network

congestion or unavailability, too many memory intensive processes running simultaneously etc. Test

engineers write code that can test feature code under all these possibilities. These tests are typically

automatically run in the labs. Bugs are filed and tracked if any of them starts failing. The way the bugs

are tracked at Microsoft worth mentioning. Testers file bug in a central bug database describing the

steps to reproduce the bug (called ‘repro steps’), and, the expected and the actual outcomes. These

bugs are then triaged by the PM, dev and test leads. One should note that not all bugs are fixed right

away. Most bugs during active development phase are fixed since they are mostly functional bugs.

However, there can be performance bugs, stress bugs, spec bugs and many more. Depending on the

cost/risk vs value of the bugs, leads decide either to fix them or resolve as “Won’t Fix”. And in certain

rare cases, bugs can also be resolved as “By Design”. (In my experience, “By design” resolution

creates more back and forth between stakeholders than “Won’t fix” since in the latter case the bug is

at least acknowledged while in the former the legitimacy of the bug is denied.) The process of

making this decision of fixing or not fixing is commonly referred to as ‘bug triaging’, typically

participated by the PM, dev and test leads.

Risky Business: The entire process of shipping software has several risks of varying degrees. By risk,

here I mean the odds of failing to deliver within allotted time. Therefore, development leads and

managers try to minimize risks by employing various strategies. Scrums, weekly team meetings (or

heart-beats), bug glides, bug-jail are several of those strategies. In daily/weekly scrums engineers

report their status and discuss blocking issues. As bugs are filed against devs, they start gradually

fixing them. Meanwhile, other bugs are discovered. Obviously, managers like to see that total

number of bugs decrease over time. This decrease in bugs over time is often referred to as bug-glide.

Eventually, as we arrive nearer to the shipping date, we hit a stage where bug count is zero and as

new bugs are filed, they are immediately fixed. This stage is referred to as Zero Bug Bounce (ZBB).

During active coding milestones (mentioned earlier), there is a concept called ‘bug-jail’ that enforces

developers to maintain quality. A developer is typically allowed to accumulate at most n (=8) bugs

while they are developing a feature. Once the count is more than n bugs, the developer must stop

working on other things and get the count below eight. Until now I have described the process. Next,

I shall share my insights that I have gained working here.

My Personal Insights: In my twenty months of experience working in a platform software team, I

found the work challenging since any enterprise scale product should be functional, efficient, secure,

robust and compliant with legacy components. (Trust me that is a lot of work!) In this section of the

document, I will be discussing some of those challenges based on my personal experience, advice

from seniors and hallway conversations. I refrain from suggesting solutions to them since there is no

generic solution to those problems (that’s why there are managers!). In practice, most of those

problems are dealt with influence and experience of older folks.

In all the designs that I have worked on, I found that the pervasive theme was either one or a

combination of the following steps: procure and filter data (by data I refer to the data that

resides/generated in device/OS/other application), package them efficiently, transport them

securely across machines/devices, store them persistently, and mechanisms to debug and configure

any of the earlier steps. There was a significant application of concurrent execution involving

thread-pools and locks. Hence obviously there is lot of concurrent state management. Given my

background, I was curiously surprised, no formal technique is being employed to prove their

correctness and ghost-bugs (or heisenbugs) haunt us sometimes six months after active

development leaving devs with no clue how to repro them, let alone fix them. Apart from the

development of this concurrent data-structures, most of the work does not require very smart

algorithms. However, that does not mean that any part of it is less complex. Often complexity arises

due to the constraints imposed by the transport protocols (e.g. unnecessary roundtrips between

machines), software architecture (e.g. data wrapped under multiple layers and type system issues)

and legacy components (spaghetti of binary dependencies). (One cannot just blame the engineers

who designed those components a decade ago for failing to foresee today’s requirements. Things

like computational power, hard-disk space and network speed have drastically changed in the last

decade.) Another source of frustration is building binaries for older platforms such as Windows Vista

and Windows7 (there is a reason why Microsoft is retiring its support for WinXP). Due to business

reasons, at least in our org, new products should also work as well in older platforms (or ‘downlevels’

as we call it). Typically the newer devs work on this thankless job commonly called Windows Targeted

Release (WTR). We call it paying the WTR debt - everybody have to do it at least once!

The other challenge working within an infrastructure team is, designing a new feature on top of an

existing infrastructure that is in maintenance mode. It is extremely difficult. Most often those legacy

components were not designed to support today’s scenarios and probably the dev who is currently

owning it has no idea of 99% of its code-base (since its original devs have moved on many years ago).

Sadly, these are generally the products with millions of customers depending on it daily. Sometimes

a brave developer attempts to move a cog and all hell breaks loose, meaning random and seemingly

unrelated tests start failing. Not so surprisingly, most new feature requests for these maintenance

mode softwares are promptly turned down. I observed this dilemma in my org dev whether to build

fresh new product (since that holds the most promises but has its own bag of unknowns and the

burden of maintaining it once it has been shipped besides the existing ones) or to make incremental

changes to existing products (that’s where the current revenues are, but at the cost of missing out on

new opportunities).

The value and productivity of a developer in a platform company grows with time. More than

smartness, in my opinion, experience and knowledge of internals are more valued assets. A senior

developer who knows exactly which function to look for in times of crises can save days, if not weeks.

This happens primarily due to lack of documentation (and design specs are not enough to account for

this). Often this knowledge is like unwritten tribal code that stays and disappears with group of

people. Career-wise, I faced the cliched dilemma of depth vs. breadth. Should I continue to invest in

learning more about the existing products and become a revered guru (or the go-to guy) in the org at

the cost of losing touch with the world outside, or, do a bit more exploration before settling down?

The decision rests entirely with individual engineers.

Dependency deadlock raises another form of risk. Suppose team A wants to depend on a feature that

team B is owning. Under ideal conditions, team A likes to have the feature ready today. Unless the

feature is available today, there is always a risk that team B might not deliver it before shipping

because of variety of reasons (e.g. deprioritization). For team B, unless team A officially declares its

intention, there is perhaps little to no motivation to invest engineer-hours into it. Therefore, team A

cannot take dependency on team B since it is not ready and team B will not invest into it since there

is not enough partner assurance from team A. Hence it turns out to be a classic chicken and egg

problem as nobody calls the shotgun. The common sad outcome of such scenarios is that team A

builds its own infrastructure that later competes with that of team B.

The future that I can see for this kind of orgs is, it will prioritize building end-to-end

solutions/products more than just platforms. I agree that building a platform is super important. But

nothing delights an enterprise customer more than an end-to-end scenario focused product.

Moreover, building a working platform takes years, however, it is not necessarily useful without an

appealing solution to a critical problem. This approach is more horizontal, where individual

horizontal layers get built on top of another successively. The obvious drawback is that when the

platform is released the customer needs have drifted probably. On the contrary, nailing one useful

scenario across layers is useful right away. This approach is more vertical which targets end-to-end

customer scenarios successively. Moreover, such solutions can be delivered at a much faster cadence

and catering current business needs. At the company level, this shift in strategy seem to resonate

well. This is because Microsoft currently is in the business of manufacturing phones, servers and

playstation consoles besides shipping operating system.

In the book ‘Lean In’, author Sheryl Sandberg discusses her rule of 18 months in making career

moves. She states that one should set short term career goals with about 18 months in the horizon. I

feel she is spot on. Earlier Microsoft used to ship new versions of operating system once in 3-5 years.

But technology horizon is changing so rapidly that this strategy doesn’t make sense anymore. Since

Windows 8 release in 2012, the company shifted into a faster cadence of release - about 1-1.5 year. I

feel at an individual level, this works as well. One should have long-term as well as short-term goals

that allow flexibility to change course and the agility to learn outside the comfort zone. A time-frame

of 18 months, in my opinion, is perfect for an unbiased evaluation of those personal goals. Earlier in

this document, I mentioned about the depth vs breadth dilemma. In my own career, I prefer to have

more breadth at this point in time. (Historically, I find myself biased towards following a ‘simulated

annealing’ based strategy instead of a greedy approach, albeit circumstances permitting.) My 1

long-term goal, at least now, is to work in the interface between research and development. Before, I

have worked in the area of formal methods where we like to model all possible state transitions, if

possible (analogous to the machine behavior). There is nothing fuzzy or uncertain about it. Not so

surprisingly, systems engineering is mostly deterministic and finite. This is one end of the computer

engineering spectrum. On the other hand, there is a growing demand in skill to deal with fuzzy,

inaccurate and evolving set of data (closer to the human nature). This is the opposite end of the

spectrum. In the short term, I want to acquire more skills in this end of the spectrum. In May 2014, I

decided to move into a new role within Microsoft Research where I shall be expected to acquire skills

in machine learning and search quality metrics. This is no doubt a risky move given my background.

But I am sure, I won’t regret the ride. And I am excited about it!

1 http://en.wikipedia.org/wiki/Simulated_annealing: A strategy based on slow decrease in the probability
of accepting (apparently) worse solutions as it explores the solution space.

http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FSimulated_annealing&sa=D&sntz=1&usg=AFQjCNFjQq5fnZAED7Cn-rzWDJ2BMUSx-g
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FSimulated_annealing&sa=D&sntz=1&usg=AFQjCNFjQq5fnZAED7Cn-rzWDJ2BMUSx-g
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FSimulated_annealing&sa=D&sntz=1&usg=AFQjCNFjQq5fnZAED7Cn-rzWDJ2BMUSx-g

