
Runtime Checking of Serializability in Software Transactional Memory

Arnab Sinha, Sharad Malik
Dept. of Electrical Engineering, Princeton University

{sinha,sharad}@princeton.edu

Abstract—Ensuring the correctness of complex implementa-
tions of software transactional memory (STM) is a daunting
task. Attempts have been made to formally verify STMs, but
these are limited in the scale of systems they can handle [1],
[2], [3] and generally verify only a model of the system, and
not the actual system. In this paper we present an alternate
attack on checking the correctness of an STM implementation
by verifying the execution runs of an STM using a checker
that runs in parallel with the transaction memory system.
With future many-core systems predicted to have hundreds
and even thousands of cores [4], it is reasonable to utilize
some of these cores for ensuring the correctness of the rest of
the system. This will be needed anyway given the increasing
likelihood of dynamic errors due to particle hits (soft errors)
and increasing fragility of nanoscale devices. These errors
can only be detected at runtime. An important correctness
criterion that is the subject of verification is the serializability
of transactions. While checking transaction serializability is
NP-complete, practically useful subclasses such as interchange-
serializability (DSR) are efficiently computable [5]. Checking
DSR reduces to checking for cycles in a transaction ordering
graph which captures the access order of objects shared
between transaction instances. Doing this concurrent to the
main transaction execution requires minimizing the overhead
of capturing object accesses, and managing the size of the
graph, which can be as large as the total number of dynamic
transactions and object accesses. We discuss techniques for
minimizing the overhead of access logging which includes
time-stamping, and present techniques for on-the-fly graph
compaction that drastically reduce the size of the graph that
needs to be maintained, to be no larger than the number
of threads. We have implemented concurrent serializability
checking in the Rochester Software Transactional Memory
(RSTM) system [6]. We present our practical experiences with
this including results for the RSTM, STAMP [7] and synthetic
benchmarks. The overhead of concurrent checking is a strong
function of the transaction length. For long transactions this is
negligible. Thus the use of the proposed method for continuous
runtime checking is acceptable. For very short transactions this
can be significant. In this case we see the applicability of the
proposed method for debugging.

Keywords-Serializability; Software Transactional Memory;

I. INTRODUCTION

Software transactional memory implementations can be
quite complex, with several tradeoffs made to reduce the per-
formance overhead. These tradeoffs result in choices made
along several orthogonal axes such as strong/weak isolation,
direct/deferred update, object granularity, concurrency con-
trol, conflict detection/resolution etc. and are reflected in

the prominent STM implementations such as DSTM [8],
WSTM [9], ASTM [10], RSTM [6] and McRT [11].

Attempts have been made to formally verify STMs, but
these are limited in the scale of systems they can handle due
to the state space explosion problem and generally verify
only a model of the system, and not the actual system [1],
[2], [3]. Thus, they, at best, provide limited assurance on the
correctness of the STM implementation.

In this work we explore an alternate direction in checking
the serializability property of an STM implementation. We
propose the use of an independent serializability checker
than runs in parallel to the main STM system. We en-
visage the use of such a checker for (i) debugging an
STM implementation (ii) using it for continuous runtime
checking. In the latter application, we overcome the large
state space challenges of formal verification by limiting the
checking to the actual traces encountered during the run.
There is strong practical motivation for this: (i) the growing
complexity of concurrent software systems will make it even
harder to apply formal verification techniques and (ii) with
future processing platforms likely to have hundreds and
even thousands of cores, it is reasonable to use some of
these cores for checking the correctness of the rest of the
system. This will be needed anyway given the increasing
likelihood of dynamic errors due to particle hits (soft errors)
and increasing fragility of nanoscale devices. These errors
can only be detected at runtime.

The rest of the paper is organized as follows. In Section II,
we review the various notions of transaction serializability.
Section III gives an overview of the proposed methodology.
Following this, Section IV explains the mechanism used for
logging critical events needed for the parallel checking. The
parallel checker is the subject of Section V. The design
choices are discussed in Section VI. In Section VII, we
present the experimental setup and the results. This is
followed by a survey of related work in Section VIII, and
conclusions and future work in Section IX.

II. SERIALIZABILITY

A parallel execution of transactions is said to be serializ-
able if the values of the variables on the completion of the
transactions are the same as would have been produced by
some sequential ordering of these transactions [12].



A. An Illustrative Example

Consider the examples depicted in Figures 1 and 2. The
shared variables a and b are initialized to 0. The actual time
order of execution of the instructions is referred to as the
history. We refer to the threads executing the transactions
as transaction threads. In this example, we assume that
transactions T1 and T2 are being executed by two different
transaction threads.

In both Figures 1 and 2, T1 begins execution before
T2 and T1 commits after T2 commits. In the execution
history of Figure 1, the value of the tuple (a,b) after T2
commits is (0,1) and T1 reads (0,1) as the value of the tuple.
Effectively, T1 executes after the completion of execution
of T2, although T1 starts execution before T2. Thus, T1
can be serialized after T2.

Figure 1. The value of the tuple (a,b) read by T1 (which is modifying none
of the variables) is (0,1), and the value written by T2 is (0,1). Therefore,
T1 can be serialized after T2. Hence, it is a serializable execution.

Next, examine the execution history of Figure 2. T1 reads
(0,1) and T2 writes (1,1). For this history to be serial, either
T2 follows T1 or vice versa. In the first case, if T2 follows
T1, then T1 should have read (0,0) i.e. the unchanged initial
value of the tuple. Further, in the second case, if T1 follows
T2, then T1 should have read (1,1) i.e. the values written
by T2. As there is no valid serial execution equivalent to
this history, this execution is non-serializable.

Figure 2. The value of the tuple (a,b) read by T1 (which is modifying
none of the variables) is (0,1), whereas, the values written by T2 is (1,1).
T1 should have read (0,0) or (1,1). Therefore, T1 reads an inconsistent
value of (a,b). Hence, it is a non-serializable execution.

This illustration of serializability is generalized in the
following graph-theoretic formulation.

B. Theoretical Background

Let G(V,E) be a graph where V is set of vertices and E
is the set of edges. A vertex ui represents the execution of
a transaction Ti and a directed edge (ui, uj) represents the
conflicting access (read-after-write (RAW), write-after-read
(WAR) and write-after-write (WAW)) of a shared variable
by Ti before Tj . These accesses are said to be conflicting
because at least one of them is a write. Note that read-after-
read (RAR) is not a conflicting access. This graph captures
the history of the transaction execution. The general problem
of serializability is often referred to as SR. It has been
shown by Papadimitriou that testing whether a history h is
serializable is NP-complete [5]. He also showed that there
exist certain efficiently computable subclasses of SR such
as DSR (interchange serializable [5], [13]). We now give
an intuition for the this NP-completeness result and how this
leads to the notion of DSR.

Figure 3. Serializability order and NP-completeness

Consider the example in Figure 3. Let transactions T1

and T3 write to a shared object o and transaction T2 read
from o. T2 is reading the value which is written by T1.
An edge (ui, uj) is a flow dependence edge if Tj reads the
value written by Ti (the bold arrows in Figure 3). Hence,
(u1, u2) is a flow dependence edge. In other words, no other
transaction that writes to o can be inserted between T1 and
T2 in the serializability order. Therefore, T1 → T3 → T2 is
not a valid serializability order. Edge (ui, uj) is said to be
inferred if it is required to impose a possible total order of
the vertices in the graph (the broken arrows in Figure 3)
consistent with the flow dependence edges. Hence, there
are two options for ordering T3, as shown in Figure 3. The
order should be either T3 → T1 → T2 or T1 → T2 → T3.
These options lead to a choice of retaining one of the two
inferred edges (u3, u1) and (u2, u3). There may be several
such choice-points in the graph leading to an exponential
number of possibilities for the total serial order which is
the source of the NP-completeness. However, if we take the
chronological order of write accesses into account, then we
can break the choice. In that case, either T3 follows T1 or
vice versa. Therefore, the order is either T1 → T2 → T3 (if
T1 writes before T3), or T3 → T1 → T2 (if T3 writes before
T1). Breaking this choice results in a DSR (interchange



serializable) graph. Hence the serializability order in this
graph can be computed in polynomial time as a topological
order of the DSR graph. As a corollary, a DSR graph is
serializable iff it is acyclic.

However, it should be noted that using DSR graphs
may produce false positives, i.e. the DSR graph may be
cyclic even though the history is serializable. Intuitively
this is less likely to happen since the DSR selects the
preferred order for each choice as one that is consistent
with the chronological order. A false positive would require
the existence of a serializability order that is inconsistent
with the actual chronological order which, while possible, is
less likely. Thus, there is practical value in checking DSR,
and this coupled with its efficient computation make this
an attractive candidate as a correctness criterion for TM
systems [14].

C. Handling Nested Transactions

The above discussion of serializability is in the context
of flat transactions, i.e. a transaction cannot include another
transaction. However modern STMs allow for nested trans-
actions [15]. We briefly discuss the applicability of the DSR
graph for checking the serializability of different possible
choices of nested transactions.
• Single-Thread Nesting: In this case the transaction

is limited to a single thread which in practice is
scheduled on a single processor. This is the case for
all known STMs. The sequential execution semantics
of the processor guarantee the sequential execution
of a transaction and thus serializability of any nested
transactions among themselves. The serializability of
transactions across threads depends on the semantics
of the nesting.

– Flattened: In this case, aborting the inner transac-
tion aborts the outer transaction, and committing an
inner transaction is not visible to other threads till
the outer transaction commits. Thus, serializability
checking across threads reduces to checking the
serializability of the outermost transactions in a
nest.

– Closed: In this case, the inner transaction aborts
without aborting the outer transaction, and com-
mitting an inner transaction is not visible to other
threads till the outer transaction commits. As in
the flattened case, serializability checking across
threads reduces to checking the serializability of
the outermost transactions in a nest.

– Open: In this case, the inner transaction aborts
without aborting the outer transaction, and com-
mitting an inner transaction is visible to all the
threads, even if the outer transaction eventually
aborts. In this case, serializability checking across
threads reduces to checking the serializability of
the outermost committed transaction in a nest.

• Multiple-Thread Nesting: In this case a single trans-
action can be split across multiple threads. While this
is not seen in STMs thus far, it is present in database
systems. In this case the serializability condition for
correctness can get quite complex (e.g., [16]). Since
this is not present in STMs, we do not consider this
further.

In summary, the DSR graph has direct application for
the practical single-threaded nesting case. For the rest of
the paper, we will assume only flat transactions, though
as explained above, this method can be applied for the
flattened, closed and open nesting cases also. However,
for these cases, careful bookkeeping is needed during the
dynamic construction of the DSR graph to track the nested
transactions.

III. CONCURRENT CHECKING OF SERIALIZABILITY

Concurrent checking of serializability requires the con-
struction and subsequent checking of cycles in the DSR
graph. There are two main challenges associated with doing
this in practice:
• Minimizing performance overhead: The computation

overhead necessary for capturing shared accesses and
graph checking should minimally affect the transaction
throughput performance.

• Bounding the DSR graph size: The DSR graph size is
O(N2), where N is the number of dynamic transac-
tions. For a transaction system that runs indefinitely,
the number of dynamic transitions is unbounded. Thus,
we need to find techniques for bounding the size of the
graph and that result in efficient graph construction and
compaction in practice.

We address the first challenge by minimizing the ad-
ditional work done in transaction threads. We limit this
to an efficient logging of the following critical events:
commencement of a transaction, object accesses made by
transactions, and termination of a transaction (either commit
or abort). The graph construction and checking uses this log
in parallel with the transaction threads.

We address the second challenge through an on-the-fly
graph compaction algorithm for which the bound on the
dynamic graph size is the number of transaction threads.
This is critical in enabling this methodology. This algorithm
is inspired by ideas used in database schedulers [12].

Figure 4 presents an overview of the components of the
concurrent checking. These are:

1) Access logging: Logging the critical events in chrono-
logical order while the transactions are active. This
includes relative timestamping of these events. Sec-
tion IV discusses this in detail.

2) Graph construction and compaction: The com-
paction of the graph is integrated with the construction
and is in parallel with the logging. The thread which
modifies the graph is referred to as the graph thread.



Figure 4. Concurrent Checking of the DSR Graph: An Overview

Section V discusses the algorithm in detail. For now
we use a single graph thread and discuss the possibility
of using multiple graph threads as part of future work.

In addressing the challenges indicated above this paper
makes the following primary contributions:
• A technique for checking serializability in parallel with

the transaction system.
• An on-the-fly graph compaction algorithm for which

the upper bound on the size of DSR graph is the number
of transaction threads.

• Experimental validation of these ideas on a practical
STM system (RSTM).

• A characterization of the applicability of this technique
(continuous runtime checking/debugging) based on a
characterization of the transactions.

IV. LOGGING CRITICAL EVENTS

This logging takes place within the STM library which
supports the transaction book-keeping and is transparent to
the application code. Any critical event is logged along
with a timestamp since we are interested in the happens
before relationship between the events. A naive solution is
to use a central log shared by all the transaction threads
and the graph thread. However, experiments reveal that
this suffers from heavy contention between the transaction
threads (producers) and the graph thread (consumer). A
better match for this producer-consumer relationship is the
use of private buffer pairs as described below.

A. Private Buffer Pair

Each transaction thread has a pair of private buffers
(queues) where it logs the critical events. Having buffers
private to a thread eliminates the contention between the
transaction threads which is unnecessary since the critical
events are not shared between threads. Further, having a
pair of buffers per thread is a good match for the producer-
consumer relationship between the transaction thread and
the graph thread. The transaction thread fills up one buffer
while the graph thread empties the other buffer. When both
threads are done, the buffers are swapped between them.
This minimizes the contention between the producer and
consumer threads. Rather than locking every access to a

single shared buffer, the locks are limited to when the buffers
need to be swapped. This idea is very straightforward and
we are not claiming this as a contribution of this paper.

B. Timestamping Events

As the transaction threads are writing to private buffers,
the order of the events across threads needs to be determined
for obtaining the happens before relationship between the
accesses of shared objects. For this purpose, we define a
timestamp(e) for the event e with the following properties:

P1: timestamp(e) has a unique value for each critical
event happening in the same thread.
P2: An event ea in thread A accesses an object before
another event eb in thread B iff timestamp(ea) <
timestamp(eb).

Next, we discuss two different timestamping mechanisms;
experimental results of using them are deferred to Sec-
tion VII.

1) RDTSC: Read Time-Stamp Counter (RDTSC) is an
Intel Pentium instruction available in Intel multicore pro-
cessor used in our experiments [17], with the following
properties:

1) It is guaranteed to return a unique value across all
cores (except for 64 bit wrap-around which is not
likely in 10 years).

2) The returned value is monotonically increasing.
RDTSC can give the ‘wall-clock’ time for its execution,
which can then be used to determine the time for an event.
Our experiments show that this instruction is very cheap
with the same execution cost as a ‘nop’ instruction, even
when executed in parallel across multiple threads.

However, this instruction timestamps its own execution
time. We are interested in timestamping the execution time
of a critical event. To ensure that the timestamps for critical
events obey property P2 above, we need to make sure that
when the critical event is paired with an RDTSC instruction,
it is guarded by a lock per object.

2) Lamport’s Logical Clock: The other timestamping
choice that we explored is Lamport’s Logical Clock [18].
This is briefly reviewed here. For each shared object o there
is global counter, g(o). For each thread there is a local event
counter, l. Consider two threads A and B trying to access
object o. Then the timestamp l(A) for thread A accessing o
is computed as following.

l(A) ← max(l(A), g(o)) + 1
g(o) ← l(A)

The computation of timestamp involves g(o) which is
shared. Hence this computation is guarded by a lock per
object. For any other critical event not involving access to
a shared object simply increment the local counter for the
thread.

l(A)← l(A) + 1



This operation is entirely local and hence no locks are
required.

V. GRAPH COMPACTION

In this section, we discuss the construction and on-the-
fly compaction of the DSR graph G. Before presenting
the detailed pseudo-code for the algorithm, we informally
present the main ideas.

A committed (aborted) vertex is a vertex representing
a transaction which has already committed (aborted). A
cycle of committed vertices in the DSR graph implies non-
serializability of the corresponding history. We refer to this
cycle as a committed cycle.

The algorithm uses the following two observations:
• Consider a vertex u, with zero indegree, which commits

in G. Assuming correct operation, after u commits, it
will not access any shared variable. Hence, u cannot
have an incident edge in the future. Therefore, u cannot
be part of a committed cycle in the future. Thus we
can safely delete u. If u accesses a shared variable
after it commits, then we have detected an error in the
implementation.

• Consider a vertex u, with non-zero indegree, that com-
mits in G. Let the parents and children of u in G be
p1, p2, . . . pk and c1, c2, . . . cl respectively, as illustrated
in Figure 5. As before, we know that u cannot have any
additional incoming edges in the future. Thus, the set of
incoming edges is limited to the current set of incoming
edges from p1, p2, . . . pk. Any future cycle that contains
u must also contain one of these parents. Thus, u can be
deleted from the graph if the connectivity between the
parents and children of u is maintained by introducing
edges (pi, cj), ∀i ∈ (1, k) and ∀j ∈ (1, l) in the
compacted graph G′. However, some additional book-
keeping is needed. Since u can have additional outgoing
edges in the future, these edges need to be captured.
This is done as follows. The unique object-id’s of the
shared objects accessed by Transaction u is denoted
as the access-set of node u. The access-sets of u are
inherited by all parents. Thus, in future if some vertex
v makes a conflicting access to a variable in the access-
set of u, this will result in edges from the parents of
u to v to represent the connected paths which would
have been there had we not deleted u.

There are two kinds of access-sets associated with a
vertex. reg(w) denotes the regular accesses made by the
transaction corresponding to vertex w. Let u be a child of
w in the DSR graph. When u commits, the access-sets of u
are inherited by w. The expression inh(w) denotes the set of
such inherited access-sets of already committed successors
of w in the uncompacted graph. An object may be part
of reg(w) as well as inh(w). Whenever an active vertex
inherits the access-sets of its committing child, the vertex is
referred to as a meta-vertex.

Figure 5. An example of graph compaction. u is a committed vertex.

The DSR graph is altered in response to the following
events.

A. Possible Events

Case 1: A new transaction begins. A new vertex correspond-
ing to the transaction is added to G.
Case 2: The transaction corresponding to vertex u has a
conflicting access (read/write) to an object o.

for all vertices p ∈ G (p 6= u) such that
o ∈ inh(p) ∪ reg(p) do

add edge (p, u) in G;
if (o ∈ inh(u)) // self-loop case

add edge (u, u) in G;
Case 3: The transaction corresponding to vertex u termi-
nates. A transaction can either commit or abort.

Case 3.1: The transaction corresponding to u commits.
Case 3.1.1: In-degree(u) = 0
We follow the null indegree compaction part of the
compactGraph algorithm (Figure 6).
Case 3.1.2: In-degree(u) > 0
We follow the non-null indegree compaction part of the
compactGraph algorithm (Figure 6).

Case 3.2: The transaction corresponding to u aborts.
We follow the compaction on abort part of the
compactGraph algorithm (Figure 6).

B. An Illustrative Example

Let us consider the DSR graph shown in Figure 7. The
subscripts of the vertices in the graph are ordered according
to their commit order. Each vertex has a pair of access-sets
reg and inh. The access-sets constitute the unique object-
id’s for the objects accessed by the transaction. The shaded
vertices represent the meta-vertices.

When u4 commits the self-loop is detected and hence the
execution is non-serializable. We need to wait until the last
member of the cycle commits for reporting the cycle, since
if any member of the cycle aborts the cycle disappears.

There are a few interesting observations about the dy-
namic DSR graph.

1) Graph size: When a vertex aborts, it is deleted. When
a vertex commits, its object access-sets might get



compactGraph(vertex u ∈ G)
1: {

// null indegree compaction
2: If (u is committed and indegree(u) = 0)
3: deleteVertex(u); // also deletes out edges

// non-null indegree compaction
4: If (u is committed and indegree(u) > 0){
5: for each parent p of u{

// inherit the object access-sets
6: inh(p) ← inh(p) ∪ reg(u) ∪ inh(u);
7: label p as a meta-vertex

// connect with the children
8: for each child c of u
9: addEdge (p, c);
10: }

// delete the vertex
11: deleteVertex (u); // also deletes both in- & out-edges
12: }

// compaction on abort
13: if(u is aborted)
14: deleteVertex(u); // also deletes both in- & out-edges
15: }

Figure 6. Algorithm for graph compaction

Figure 7. An example of graph compaction

inherited (depending on the in-degree) and the vertex
is deleted. Hence, the vertices which are present in the
graph are all active. Moreover, at any time at most one
transaction can be active in a thread. Therefore, at any
given time, the number of vertices in the DSR graph
is bounded by the number of active threads.

2) Cycle detection: As there are only active vertices in
the DSR graph, a cycle of committed vertices in the
original uncompacted graph will be represented by
a self-loop of the vertex (which is a member of the
cycle in the uncompacted graph too) committing last.
Therefore, in order to detect a cycle, we just need to

check every committing vertex for a self-loop.

C. Cycle Preservation Theorem

We now prove the correctness of the graph compaction
algorithm. Specifically we show that the resulting compacted
graph is cycle-equivalent to the original graph.

We start by defining the following Transaction Events and
the corresponding Graph Events.

Transaction Events (TE):
TE1: A new transaction begins.
TE2: A transaction makes a conflicting access

to a shared object.
TE3: A transaction commits/aborts.

Graph Events (GE):
GE1: A new node is added to the graph when

a transaction begins.
GE2: A new edge is added to the graph when

a transaction makes a conflicting access
to an object.

GE3: deleteV ertex(u) when u commits and
indegree(u) = 0.

GE4: deleteV ertex(u) when u commits and
indegree(u) > 0.

GE5: deleteV ertex(u) when u aborts.

The impact of the TE’s on the DSR graph is a combination
of one or more of the GE’s. TE1 corresponds to GE1, TE2

corresponds to (GE2)*, while TE3 corresponds to (GE3 +
GE4+GE5). Here “*” indicates “one or more instances of”,
and “+” indicates “or”. Further, graph events GE3, GE4 and
GE5 are triggered by the procedure compactGraph only.
If the procedure compactGraph is never called, nodes or
edges are not deleted from the DSR graph (GE1 and GE2

never delete any part of the graph).

G
(GE1+GE2)∗−−−−−−−−−→ Gf

↓ (GE3 + GE4 + GE5)

G′
(GE1+GE2)∗−−−−−−−−−→ G′f

Figure 8. At any step, the transformation G
(GE3+GE4+GE5)−−−−−−−−−−−−−→ G′

is triggered by procedure compactGraph and leads to compaction of the
graph. The other transformations lead to expansion of the graph.

At any point in time let G be the DSR graph. If the
procedure compactGraph is not invoked from this point on,
Gf is the final DSR graph. The transition G→ Gf is a result
of combinations of the graph events GE1 and GE2. Any one
of the following graph events: GE3, GE4 or GE5 enables
the transition: G→ G′. If the procedure compactGraph is
not invoked from this point on, G′f is the final DSR graph.
The transition G′ → G′f is a result of combinations of the
graph events GE1 and GE2 (see Figure 8).



The following theorem states that any one application of
GEi’s (i = 3,4,5), preserves the cycles in the DSR graph.
Observe that each call of procedure compactGraph (which
is recursive by nature) triggers a combination of graph
events: GEi’s (i = 3,4,5). Thus, the transitive application of
this theorem proves that there is a cycle in the uncompacted
DSR graph iff there is a cycle in the compacted DSR graph.

Cycle Preservation Theorem: There is a committed cycle
in Gf iff there is a committed cycle in G′f .

Proof: Observe that (i) V (G) ⊆ V (Gf ) & E(G) ⊆ E(Gf ),
(ii) V (G′) ⊆ V (G′f ) & E(G′) ⊆ E(G′f ) (iii) G → G′

involves deletion of nodes and edges.
We prove the theorem for each of the possible transition

choices. We start with the easiest case.

Case 1: G
GE5−−−→ G′, i.e. u gets deleted on its abort.

If u aborts it can never be a vertex in a committed cycle in
Gf . Also, u /∈ G′ as u is deleted by GE5 and hence it is
not part of a committed cycle in G′f . Clearly, GE5 never
affects any other vertices besides u and any other edges
besides those that are incoming or outgoing from u. Thus,
it never affects the committed cycles of either Gf or G′f .

Therefore, for the case of the transition, G
GE5−−−→ G′ there

exists a cycle in Gf iff there exists a cycle in G′f .

Case 2: G
GE3−−−→ G′, i.e. u gets deleted when u commits and

indegree(u) = 0. If u is committed with null indegree, in
correct operation the committed u cannot have any incident
edge in the future. (If there is an edge in the future, then we
have caught an error and we can stop.) Thus, u cannot be
part of a committed cycle in Gf . Moreover, u gets deleted
in G′, therefore, it cannot be part of a committed cycle
in G′f . Further, deleting u (and any outgoing edges), does
not delete any other edges and vertices in the graph. Thus,
GE3 does not affect the committed cycles of either Gf or
G′f . Therefore, for the case of the transition: G

GE3−−−→ G′,
there exists a cycle in Gf iff there exists a cycle in G′f .

Case 3: G
GE4−−−→ G′, i.e. u gets deleted when u commits

and indegree(u) > 0.

If part: We consider the following cases.
Case 3.1: u is part of a cycle in G. u must have some
parent p and some child c which are also member vertices
of the cycle. By the graph event GE4, edges (p, u) and
(u, c) are replaced by the edge (p, c) ∈ G′ (line 14 in
procedure compactGraph). Therefore, if edges (p, u)
and (u, c) complete a cycle in G, (p, c) will complete
a cycle in G′ too. As neither GE1 nor GE2 deletes any
edge, if there exists a cycle in Gf , then there also exists
a cycle in G′f .

Case 3.2 (Future inclusion of u in the cycle): u is not a
part of a cycle in G but a part of a cycle in Gf . There
are two cases here.
Sub-case A: Some conflicting access creates an outward
edge from u (say (u, v)) in the future (incident edge is
impossible since u is already committed) which makes
it part of the cycle in Gf . Also let p (some parent of u
in G) and v be part of this cycle in Gf . By GE4, the
object accesses of u (reg(u)∪ inh(u)) will be inherited
by the all the parents of u in G′ (line 6 in procedure
compactGraph). Therefore, the conflicting edge (p, v)
will be present in G′f and hence completes the cycle.
Sub-case B: Some edge e (e /∈ G & e ∈ Gf ) not adjacent
to u includes u in the cycle. This implies that some parent
(p, say) and some child (c, say) of u are also part of the
cycle in Gf . We argue similar to Case 3.1, edge (p, c)
should be in G′. Therefore, (p, c) is also in G′f and hence
it completes the cycle.

Only-if part: Let p and c be a parent and child of u in G
respectively.

Case 3.3: Edge (p, c) is part of the cycle in G′f . p and
c have a conflicting access of object o such that either
o ∈ reg(p) or o ∈ inh(p). In the former case, the edge
(p, c) is also present in Gf thereby completing the cycle.
In the later case, object o ∈ inh(p) is inherited from
some committed vertex (say u). This implies that edges
(p, u) and (u, c) are present in Gf . If (p, c) completes the
cycle in G′f , edges (p, u) and (u, c) will also complete
a cycle in Gf . Therefore, if there is a cycle in G′f , there
is a cycle in Gf too.
Case 3.4: p is part of the cycle but none of the children
of u (in G′) is part of the cycle in G′f . Let edge (p, v)
(v /∈ children(u)) be part of the cycle. Therefore, p
and v have a conflicting access of object o such that
either o ∈ reg(p) or o ∈ inh(p). In the former case,
the edge (p, v) is also present in Gf . In the later case,
object o ∈ inh(p) is inherited from some committed
vertex (say w). Hence, o ∈ reg(w) or o ∈ inh(w) .
Therefore, in Gf , both the edges (p, w) and (w, v) are
present completing the cycle.

VI. IMPLEMENTATION ISSUES

We used the Rochester Software Transactional Mem-
ory (RSTM) system for our experiments. We present an
overview of the RSTM benchmark code and the backend
library followed by a discussion of the engineering design
choices made in the implementation of concurrent logging,
graph construction and compaction.

A. Overview of RSTM code

We discuss the structure of the RSTM code briefly with
an example. Counter is a simple RSTM benchmark. A
transaction of Counter increments the value of a shared
counter. Figure 9 gives the transaction code.



1: BEGIN_TRANSACTION
2: stm::wr_ptr<Counter> wr(m_counter);
3: wr->set_value(wr->get_value(wr)+1, wr);
4: END_TRANSACTION

Figure 9. Transaction code for the RSTM benchmark Counter

The transaction boundaries are demarcated by
BEGIN_TRANSACTION and END_TRANSACTION. These
are macros which get expanded to lines of code which
handle the commit mechanism (or rollback mechanism in
case of abort) and other book-keeping tasks. The benchmark
requests a pointer to the shared variable m_counter in
the ‘write’ mode (line 2). This request is served by the
function OpenReadWrite in the backend library (function
OpenReadOnly serves the request for read-only pointers).
Function OpenReadWrite returns a pointer after certain
condition checks and book-keeping operations are done. In
our implementation, we instrument these library functions
such that just before returning the pointer, the access
information is recorded in the log. Access information
includes thread-id, transaction-id, object-id, mode of access
(read/write) and the timestamp. Moreover, the shared
objects are guarded using light-weight locks (bool_cas
available in the RSTM library).

B. Graph Construction and Compaction

The graph thread reads access information from the
private buffer pairs. For the first object access from a
transaction, it creates a new vertex and connects edges
between the new vertex and other vertices which accessed
the object before in a conflicting manner. If a transaction
wants to access a shared variable in ‘read’ mode, the event is
logged right before the pointer is returned from the function
OpenReadOnly. However, in case of ‘write’ access, we
record the event only when the transaction ‘commits’ and
the old version is replaced by the ‘cloned’ copy (since
RSTM follows a deferred update policy). Moreover, the
actual ‘commit’ event is recorded, only after recording all
the write accesses of a committing transaction. We do so in
order to guarantee that no incident edge can appear once a
vertex commits or aborts. For the error free case, the final
graph should contain no vertices, i.e. if all the transactions
terminate and the execution is serializable. There are three
possible error scenarios.

1) The transaction accesses an object after it commits.
2) There is an uncommitted vertex at the end.
3) A committing vertex has a self-loop indicating a

serializability violation.

VII. RESULTS

We conducted experiments with the following bench-
marks.
• RSTM benchmark suite - The benchmark suite of

RSTM (release 4) uses the object-based library [6].

• Synthetic benchmark - Experiments conducted with a
self-constructed synthetic benchmark (using the object-
based library) to show how the overhead varies with
different factors, such as the number of shared objects
and length of activity inside a single transaction. Exper-
iments with RSTM benchmarks and synthetic bench-
mark were performed with an Intel i7 processor (4
physical and 8 virtual cores, 2.67 GHz, 3 GB memory)
running 64-bit Windows Vista Home Premium.

• STAMP benchmarks - STAMP benchmarks [7] use one
of the word-based libraries (e.g. Extended Timestamp
(ET)) in RSTM (release 5). Experiments were per-
formed with the same Intel i7 processor running Ubuntu
2.6.31-14-generic.

The experiments with the RSTM (object-based) suite and
the synthetic benchmark are conducted for 30-60 seconds
with 1-5 threads executing transactions. Each of the threads
runs on a dedicated virtual core. There is a single graph-
thread which also runs on a separate virtual core. The
experiments were conducted with both timestamping meth-
ods discussed in Section IV, viz., Read Timestamp Counter
(RDTSC) and Lamport’s Logical Clock (LLC).

For the RSTM suite and synthetic benchmark, the user
specifies the length of the execution of transactions. Once
the execution is over, the software reports the average
committed transaction throughput per thread. The following
three sets of experiments were run with the RSTM suite
and the synthetic benchmark, for 1-5 transaction threads and
timestamping mechanisms (RDTSC or LLC).

1) Baseline Experiments: Experiments with the valida-
tion part turned off i.e. normal execution of RSTM.
The transaction throughputs in these experiments is
referred to as original throughput.

2) Only Logging: In these experiments, the critical
events in the transaction threads are logged but no
graph is constructed. In this case, the consumer
thread simply drains the filled buffer. We refer to
this throughput as logging-only throughput. These
experiments are performed to see the effect of logging
(without graph-checking) on the transaction through-
put.

3) Graph-checking: The logging of events and the
graph-checking take place concurrently in this set of
experiments. This throughput is referred to as full-
validation throughput.

A. Experiments with the RSTM suite

The benchmarks in this suite consist of kernels with very
little computation inside a transaction as exemplified by
the Counter benchmark shown in Figure 9. Figure 10(a)
shows the logging-only throughput normalized with respect
to the original throughput using LLC timestamping. The
average normalized throughput is approximately 0.3 which
implies a 3X slowdown of the benchmarks. With concurrent



(a) Ratio of logging-only throughput to original throughput

(b) Ratio of full-validation throughput to original throughput

Figure 10. Results of RSTM suite with LLC timestamping

graph-checking the average normalized throughput drops to
0.1 (see Figure 10(b)). In comparison, normalized logging-
only throughput with RDTSC timestamps (Figure 11(a))
performs slightly better. However, the normalized throughput
with concurrent graph-checking suffers a significant degra-
dation with RDTSC timestamps (Figure 11(b)). Thus, LLC
is the overall preferred mechanism for timestamping. This
was also the observation with the synthetic benchmark.

These graphs omit results for one benchmark -
RandomGraph. In this case, the overhead is negative, i.e.
the validation results in an increase in throughput as a result
of a change in the conflict pattern. This anomalous off-scale
case is dropped to provide better resolution of the throughput
axis.

B. Experiments with a Synthetic Benchmark

The synthetic benchmark parameterizes the Counter
benchmark (in the RSTM suite) in two ways. The number of
the variables is a parameter. It randomly chooses a variable
out of the pool and increments its value at each step inside
a do-while loop for a user specified loop-count which is
the second parameter. Figure 14 presents the pseudocode for
the benchmark.

Two sets of experiments were performed with the syn-
thetic benchmark.

(a) Ratio of logging-only throughput and original throughput

(b) Ratio of full-validation throughput and original throughput

Figure 11. Results of RSTM suite with RDTSC timestamping

Experiment 1: In the first experiment, we were inter-
ested in the variation of the normalized throughput with
varying number of threads and number of shared objects
while the loop-count is fixed at 103. Similar experiments
(as described before) were performed with the synthetic
benchmark employing both timestamping mechanisms. For
brevity, the results obtained with LLC timestamping are
presented as this had the lower overhead. We observe that the
logging overhead increases slightly with increasing number
of variables (Figure 12(a)). However, the full validation
overhead increases significantly with increasing number of
variables (Figure 12(b)). While contention drops when the
number of shared objects increases, the access-sets (defined
in Section V) of the vertices in the graph are larger which
implies more computation for graph-checking.
Experiment 2: Next, we were interested in studying the
effect of transaction length on the normalized throughput.
In this experiment the number of shared objects varied, but
the number of transaction threads was fixed at 5 (Figure 13).
We observe that with fewer shared objects (< 10) there is
a significant increase in throughput when the loop-count
increases from 102 to 103. However, at the other extreme
(when the no. of objects=104) this inflection point is at loop-
count=103 → 104. Therefore, concurrent graph-checking



(a) Ratio of logging-only throughput to original throughput

(b) Ratio of full-validation throughput to original throughput

Figure 12. Results of synthetic benchmark with loop-count=103 and LLC
timestamping

Figure 13. Results of synthetic benchmark with varying loop-count(1-
106) with 5 transaction threads using LLC timestamps. This chart shows
the ratio of full-validation throughput and original throughput.

overhead is low when diminished contention for objects is
coupled with prolonged activity within the transaction. In
particular, when the transaction length is significant (loop-
count=106), the logging overhead is negligible compared to
transaction activity and the graph thread has no difficulty
keeping up with the transaction threads - resulting in negli-

1: BEGIN_TRANSACTION
2: obj_id := rand() % no_of_objects;
3: stm::wr_ptr<Synthetic> wr(ObjList[obj_id]);
4: do{
5: i++;
6: wr->set_value((wr->get_value(wr)+1), wr);
7: }while(i<loop_count);
8: END_TRANSACTION

Figure 14. Pseudocode for the Synthetic Benchmark. no_of_objects
and loop_count are parameters.

gible overall throughput degradation.

C. Experiments with the STAMP benchmark suite

STAMP benchmarks [7] emulate real-world applications
with varying degrees of contention and lengths of transac-
tion. Moreover, each benchmark is provided with various
input sets, which can be broadly classified into two classes.
The input sets which are good for execution either in
simulation environment or in low-contention scenarios are
denoted as lightweight input sets, while the ones which are
better suited for execution either in actual systems or in
high-contention scenarios are denoted as heavy-duty input
sets. We have experimented with and compared both the
cases. In Figure 15, each benchmark is labeled first with
its length of transaction (short (S), moderate (M), long (L),
very long (VL)); and then with the level of contention (low
(L), low to moderate (LM), moderate to high (MH) and
high (H)). For instance, benchmark vacation (M-LM) has
moderately (M) long transactions with low to moderate (LM)
contention. Moreover, unlike the RSTM infrastructure which
reports average throughput, in this case, the infrastructure
reports the validation time. Thus, the columns 2 & 3 in
Figure 15 provide the normalized validation time (validation
time compared to the baseline with no validation) with LLC
timestamping. The results are shown in tabular instead of
graphical form due to the greater variation.

Benchmarks low-contention high-contention
/simulator /non-simulator

STAMP benchmarks (high-overhead)
ssca2 (S-L) 2.018 62.067
kmeans (S-L) 4.255 317.462
genome (M-L) 25.161 181.804
intruder (M-MH) 10.043 322.019
vacation (M-LM) 93.537 263.336
yada (L-M) 1.79 67.907

STAMP benchmarks (low-overhead)
bayes (L-H) 1.427 1.477
labyrinth (VL-VH) 0.331 2.505

Figure 15. Normalized validation times for STAMP benchmarks

The benchmarks have been grouped according to their
transaction lengths and level of contention. The results with
STAMP benchmark reinforce the previous result obtained
with synthetic benchmark - the higher the length and con-
tention, the lower the validation time.



D. Inferences

We draw the following inferences from these results.
1) LLC is to be preferred over RDTSC for timestamping.
2) For short transactions the logging and graph-checking

overhead is significant. This rules out the application
of the current implementation for continuous runtime
checking. However, we see an application in debug-
ging. This of course comes with the usual concern
related to Heisenbugs [19], bugs which disappear
when they are tried and observed, in this case due to
change in the concurrent execution due to the checking
computation.

3) For long transactions both the logging and graph
checking overheads are negligible compared to the
transaction execution. This makes it acceptable to use
the current implementation for continuous checking.

It is reassuring to report that no cycles, i.e. violations of
serializability were detected in any of the examples.

VIII. RELATED WORK

Serializability is a well studied problem in the context
of database systems. Bernstein presents a summary of con-
currency control and recovery in database systems in his
book [12]. Traditionally, database schedulers are entrusted
with the responsibility of maintaining the serializability of
transactions. These schedulers can be broadly classified into
three categories - Two Phase Locking (2PL), Timestamp
Ordering (TO) and Serialization Graph Testing (SGT). Our
graph compaction technique is inspired by SGT.

Papadimitriou defined and investigated the complexity of
verifying whether a given history is serializable [5]. He
also showed that the general problem of recognizing a
serializable transaction history is NP-complete and that sub-
classes such as DSR and SSR are efficiently recognizable.
Another correctness criterion, linearizability was defined by
Herlihy & Wing [20]. Linearizability, a special case of strict
serializability, assumes that the effect of a method invocation
occurs at an instantaneous point somewhere between the
invocation and completion of the method.

The rise in popularity of STMs has also attracted interest
from the formal verification community. Researchers have
attempted to verify serializability and other correctness
criteria using well-studied formal techniques such as model-
checking [1], [2], [3]. Henzinger et al. showed that an STM
that enjoys certain symmetry properties either violates a
safety or liveness requirement on some program with 2
threads and 2 shared variables, or satisfies the requirement
on all programs [1]. Cohen et al. have developed a formal
specification of correctness of TM and a methodology for
verifying the TM implementations [2]. In this paper, they
have developed specifications for three different kinds of
TM. However, they did not publish any experimental re-
sults to show the efficacy of their proposed methodology.

Researchers at Intel attempted to model-check an industrial
transactional memory system (McRT STM from Intel) for
checking serializability [3]. The authors were able to verify
that McRT STM guarantees the serializable execution of two
threads, where each thread is running a transaction consist-
ing of three reads or writes using the Spin model-checker
in their experiments. This shows that existing formal tools
are unable to handle the large state-space of TM systems.
Tasiran proposes formal verification of an implementation
of TM [21]. This is an indirect proof that uses a set of
sequential assertions to verify the serializability property.

The intractability of the large state-space of STMs have
led researchers to explore other alternatives such as runtime
approaches. In this direction, Chen et al. [14] proposed a
promising solution to verify serializability of hardware trans-
actional memory by piggy-backing the underlying cache-
coherence protocol. However, the absence of such an in-built
mechanism to resolve conflicting accesses make it a more
difficult problem in software.

Our graph construction and compaction relies on the
faithful recording of the critical events in chronological
order. Replay architectures also use recording for debug-
ging in a multiprocessor environment (due to the inherent
non-repeatability of the bugs in this framework), intrusion
analysis and fault tolerance e.g. [22], [23], [24]. All of
them utilize hardware support for: 1. recording at-speed of
data production, 2. minimizing the logging overhead, and 3.
replay at a speed similar to that of the initial execution [24].
In our work, recording critical events is done purely in
software.

IX. CONCLUSIONS AND FUTURE WORK

In this paper we explore the concurrent checking of STM
implementations. We show how concurrent checking can
be accomplished through a logging of critical events in the
transaction threads accompanied by graph checking of the
DSR graph in a parallel thread. A key contribution here is the
use of a dynamic graph compaction algorithm that reduces
an otherwise unbounded graph to one no larger than the
number of threads. As part of the checking we also explore
two alternate timestamping mechanisms for logging critical
events: the use of a hardware timestamp counter (the RDTSC
Intel Pentium instruction), and Lamport’s Logical Clock.

We demonstrate a practical implementation of these ideas
as part of the RSTM system and study its application to
the RSTM benchmarks as well as a parameterized synthetic
benchmark. Here we observe that the overhead of the
concurrent checking is a strong function of the transaction
length. For transactions with significant computation, the
logging and graph checking have negligible overhead, mak-
ing the use of this implementation very practical for contin-
uous runtime checking. For transactions with short computa-
tion, the overhead is significant, making this implementation
impractical for continuous checking. However, it may be



reasonable to utilize this implementation for debugging.
Further, we see potential for making the implementation
more efficient and thus increasing the range of instances for
which it can be using for continuous checking. In particular,
the current implementation uses a single graph thread. We
will explore various alternatives for parallelizing this thread
in our future work.

ACKNOWLEDGMENT

The authors acknowledge the support of the Gigascale
Systems Research Center, one of six research centers funded
under the Focus Center Research Program (FCRP), a Semi-
conductor Research Corporation program. The authors also
like to thank the support extended by Luke Dalessandro and
Michael L. Scott of the RSTM group at the University of
Rochester, Christos Kozyrakis of the STAMP project at the
Stanford University and Daniel Schwartz-Narbonne at the
Princeton University.

REFERENCES

[1] R. Guerraoui, T. A. Henzinger, B. Jobstmann, and V. Singh,
“Model checking transactional memories,” in PLDI ’08: Pro-
ceedings of the 2008 ACM SIGPLAN conference on Program-
ming language design and implementation. New York, NY,
USA: ACM, 2008, pp. 372–382.

[2] A. Cohen, J. W. O’Leary, A. Pnueli, M. R. Tuttle, and L. D.
Zuck, “Verifying correctness of transactional memories,” in
FMCAD ’07: Proceedings of the 7th International Conference
on Formal Methods in Computer-Aided Design (FMCAD),
November 2007, pp. 37–44.

[3] J. O’Leary, B. Saha, and M. R. Tuttle, “Model checking trans-
actional memory with spin,” in PODC ’08: Proceedings of the
twenty-seventh ACM symposium on Principles of distributed
computing. New York, NY, USA: ACM, 2008, pp. 424–424.

[4] International Technology Roadmap for Semiconductors
(ITRS) 2007 Edition, ITRS, 2007.

[5] C. H. Papadimitriou, “The serializability of concurrent
database updates,” J. ACM, vol. 26, no. 4, pp. 631–653, 1979.

[6] V. J. Marathe, M. F. Spear, C. Heriot, A. Acharya, D. Eisen-
stat, W. N. Scherer III, and M. L. Scott, “Lowering the over-
head of software transactional memory,” in ACM SIGPLAN
Workshop on Transactional Computing, Jun 2006.

[7] C. Cao Minh, J. Chung, C. Kozyrakis, and K. Oluko-
tun, “STAMP: Stanford transactional applications for multi-
processing,” in IISWC ’08: Proceedings of The IEEE Interna-
tional Symposium on Workload Characterization, September
2008.

[8] M. Herlihy, V. Luchangco, M. Moir, and W. III, “Software
transactional memory for dynamic-sized data structures,” in
PODC ’03: Principles of Distributed Computing, Jul 2003,
pp. 92–101.

[9] T. Harris and K. Fraser, “Language support for lightweight
transactions,” in Object-Oriented Programming, Systems,
Languages, and Applications, Oct 2003, pp. 388–402.

[10] V. J. Marathe, W. N. Scherer III, and M. L. Scott, “Adaptive
software transactional memory,” in Proceedings of the 19th
International Symposium on Distributed Computing, Cracow,
Poland, Sep 2005.

[11] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. Cao Minh,
and B. Hertzberg, “McRT-STM: a high performance software
transactional memory system for a multi-core runtime,” in
Proc. 11th ACM SIGPLAN Symp. on Principles and Practice
of Parallel Programming (PPoPP ’06), Mar 2006, pp. 187–
197.

[12] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concur-
rency control and recovery in database systems. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc.,
1986.

[13] R. Sethi, “Useless actions make a difference: Strict serial-
izability of database updates,” J. ACM, vol. 29, no. 2, pp.
394–403, 1982.

[14] K. Chen, S. Malik, and P. Patra, “Runtime validation of
transactional memory systems,” in International Symposium
on Quality Electronic Design, March 2008.

[15] J. R. Larus and R. Rajwar, Transactional Memory. Morgan
& Claypool, 2006.

[16] R. F. Resende and A. El Abbadi, “On the serializability the-
orem for nested transactions,” Amsterdam, The Netherlands,
The Netherlands, Tech. Rep. 4, 1994.

[17] Intel 64 and IA-32 Architectures Soft-
ware Developer’s Manual Vol 2B, Intel(R),
http://developer.intel.com/design/processor/manuals/
253667.pdf.

[18] L. Lamport, “Time, clocks, and the ordering of events in a
distributed system,” Commun. ACM, vol. 21, no. 7, pp. 558–
565, 1978.

[19] G. Neville-Neil, “Kode vicious bugs out,” Queue, vol. 4, no. 3,
pp. 10–12, 2006.

[20] M. P. Herlihy and J. M. Wing, “Linearizability: a correctness
condition for concurrent objects,” ACM Trans. Program.
Lang. Syst., vol. 12, no. 3, pp. 463–492, 1990.

[21] S. Tasiran, “A compositional method for verifying software
transactional memory implementations,” Microsoft Research,
Tech. Rep. MSR-TR-2008-56, Apr 2008, technical Report.

[22] M. Xu, R. Bodik, and M. D. Hill, “A “flight data recorder”
for enabling full-system multiprocessor deterministic replay,”
in ISCA ’03: Proceedings of the 30th annual international
symposium on Computer architecture. New York, NY, USA:
ACM, 2003, pp. 122–135.

[23] S. Narayanasamy, C. Pereira, and B. Calder, “Recording
shared memory dependencies using strata,” SIGPLAN Not.,
vol. 41, no. 11, pp. 229–240, 2006.

[24] P. Montesinos, L. Ceze, and J. Torrellas, “Delorean: Record-
ing and deterministically replaying shared-memory multipro-
cessor execution efficiently,” in ISCA ’08: Proceedings of
the 35th International Symposium on Computer Architecture.
Washington, DC, USA: IEEE Computer Society, 2008, pp.
289–300.


