
ADL-driven Test Pattern Generation for Functional Verification of Embedded
Processors

Abstract

With increasing complexity of modern microprocessors, the task
of verification is becoming an imposing challenge to tackle. To cope
with the complexity, verification in early design phase of the pro-
cessor is being proposed in literature [1]. Architecture Description
Languages (ADLs) offer a convenient high-level modelling platform
for advanced embedded processors. From an ADL description, the
software tools e.g. simulator, C-compiler, assembler as well as the
processor implementation in Register Transfer Level (RTL) can be
automatically generated. Clearly, ADL-driven verification offers
an approach to integrate verification in early phase of microproces-
sor design. A major requirement in such verification approaches is
a compact test-pattern yielding high coverage. In this paper, this
problem is addressed. We have proposed a novel backtracking al-
gorithm for cycle-accurate pipelined processors to obtain the test-
pattern, which explicitly targets the coverage of each conditional
block of the processor description. This results in a high-coverage
test pattern. The effectiveness of the approach is demonstrated with
a case study of two simplescalar pipelined RISC processors.

1. Introduction

The growing design complexity coupled with the short time-to-
market have increased the importance of verification in the design
cycle of today’s embedded processors considerably. The designer
needs to deliver the optimum performance in a short time without
compromising the verification issues. To manage the imposing de-
sign complexity, nowadays the processor design is performed on
a high level of abstraction, thereby allowing fast design space ex-
ploration for target-specific architectures. Architecture Description
Languages (ADLs), allowing efficient high-level processor design,
is getting prominence in industry [2][3] and academia [4]. From an
ADL description, the software tools e.g. simulator, HLL compiler,
assembler as well as the processor implementation in RTL can be
automatically generated.

With the increasing design abstraction, verification is receiv-
ing continuous attention from the Electronic System Level (ESL)
design community. Several research initiatives are taken in or-
der to integrate the verification flow with the high-level design
flow. Notable endeavours are high-level simulation [5], sequential
logic equivalence checking [6], assertion-based semi-formal verifi-
cation [7], property-driven verification [8] etc. For two of the ma-
jor verification approaches, namely assertion-based verification and
simulation-based verification, a key component of the verification
flow is a test-pattern to drive the verification. Here we focus on
functional test pattern i.e. test patterns to trigger the functional er-
rors in the design.

In the perspective of processor design, the functional test pat-

terns are a set of processor instructions. In general, the test-pattern
needs to be small (to reduce simulation time) as well as sufficient
to cover the complete design. The term coverage plays an impor-
tant role to justify the quality of the test-pattern. Different cover-
age metrics and corresponding test pattern generation to achieve a
high coverage have been proposed in the literature. In the following
paragraphs existing approaches of automatic test pattern generation
from high-level specification is studied. The corresponding cover-
age metrics are mentioned, too.

Functional test generation from high-level processor descrip-
tions is a well-studied field. Several attempts to automate the
test generation from Register-Transfer-Level (RTL) or higher-
abstraction of a processor have been made. These approaches can
be broadly classified as coverage-driven or analytical approach.

Coverage-driven approaches strongly rely on the feedback of the
coverage to the test-generation mechanism. Exemplarily, Corno et
al [9] proposed a genetic algorithm-based framework to build up
the test pattern on the basis of coverage feedback. This approach
demonstrated 100% RTL statement coverage for a sparc-compatible
processor. However, the genetic algorithm required simulation of
up to 7.3 million instructions to obtain the compact instruction-set
showing 100% RTL statement coverage. Clearly, the runtime of
the test generation is a big drawback here. Fast convergence of the
algorithm is dependent on the choice of parameters like mutation,
cross-over and effective fitness criteria.

In analytical approaches, the instructions which excite the pro-
cessor resources and/or operators are chosen systematically [3].
The operands are selected to reflect different scenarios like data haz-
ards or control hazards in a pseudo-random manner. Often, manual
intervention or good heuristics play an important role in determin-
ing the quality of the test-patterns. IBM Genesys Test Generation
framework [10] is one such example. In this test generation pro-
cess, the verification engineer guides the generation process via a
Graphical-User-Interface. IBM Genesys framework is shown to be
quite useful to reveal corner case bugs. Full coverage of the RTL
implementation of the processor is not explicitly targeted. The an-
alytical approach presented by Luethje [11] is one prominent ap-
proach to achieve complete statement coverage from an high-level
description. Luethje performed an abstract execution of the condi-
tional blocks of an ADL description and showed full coverage of
the ADL statements. However, his algorithm works for instruction-
accurate processor models only i.e. the algorithm is not scalable to
pipelining effects. Another notable effort to automate test genera-
tion from high-level description is presented by Mishra et al [12].
Mishra et al proposed a new functional coverage metric on the basis
of a graph model of the processor. The functional coverage metric
include scenarios like pipeline execution, register read/write, opera-
tion execution etc. A drawback of this approach is that, it considers
the operations atomically as nodes of the graph and the input/output
operands are loaded/stored by specific processor instructions, which
are known in advance. If an operation contains deeply nested data-

flow within it, this approach may not cover the execution of all con-
ditions within it. To the best of our knowledge, there is no analyti-
cal approach to automatically obtain the coverage of all conditional
blocks for a cycle-accurate processor implementation. The biggest
hindrance to such an attempt is the complexity of the processor it-
self. In [13], a HDL-satisfiability checker algorithm is developed
to determine stimuli for exciting selected paths in an HDL model.
This is close to the solution approach presented in this paper. In our
case, the problem is attacked with a backtracking algorithm aided
with some heuristics. Due to the overall architectural knowledge
available from ADL description, the backtracking algorithm turned
out to be efficient in runtime.

In the work presented in this paper, we start from an existing
test generation tool capable of generating constrained random test-
cases. This framework, with able guidance, is shown to achieve
high RTL statement coverage for pipelined processors [14]. Sim-
ilar constraint-driven test-generation frameworks are used heavily
in industry and academia. In this paper, our contribution is to pro-
pose an analytical backtracking-based algorithm for extracting con-
straints from an ADL description. These constraints, when fed to
the existing test generation tool, can generate test-case achieving
high RTL statement coverage. The complete tool is based on a high-
level ADL-driven processor design framework thereby aiding early
verification.

The contribution of this paper is to present:
� An ADL-based automatic tool-flow to achieve high RTL

statement coverage.� A novel backtracking algorithm for functional test generation
of pipelined processors.

This paper is organized as follows: section 2 discusses the basic
features of ADL necessary for understanding the rest of this paper.
The information necessary for the test generation is extracted from
the ADL, which is elaborated in this section. Section 3 provides a
short overview of the ADL-driven constrained random test gener-
ation. Section 4 and section 5 describes the complete verification
flow in detail, including the constraint extraction algorithm. Sec-
tion 6 elaborates and analyzes our case study. We conclude with the
summary and outlook.

2. ADL : An Overview
In this section, a brief overview of the architecture description

language LISA is provided. Only those language elements, which
are relevant for this paper are covered here.

2.1 LISA Operation Graph
In LISA, an operation is the central element to describe the tim-

ing and the behavior of a processor instruction. The instruction may
be split among several LISA operations. The resources (registers,
memories, pins etc.) are declared globally in the resource section,
which can be accessed from any LISA operation.

The LISA description is based on the principle that a specific
common behavior or common instruction encoding is described in
a single operation whereas the specialized behavior or encoding is
implemented in its child operations. With this principle, LISA op-
erations are basically organized as an n-ary tree. However, special-
ized operations may be referred to by more than one parent oper-
ation. The complete structure is a Directed Acyclic Graph (DAG)�������	��

�

. V represents the set of LISA operations, E the graph
edges as set of child-parent relations. These relations represent Ac-
tivations, which refer to the execution of another LISA operation.
Figure 1 gives an example of a LISA operation DAG. As shown,
the operations can be distributed over several pipeline stages.

Decode

ADD

Arithmetic

SUB

Writeback

'HFRGH VWDJH

([HFXWH VWDJH

:ULWHEDFN VWDJH

Figure 1. LISA Operation DAG Example
2.2 Instruction Coding Description

The instruction encoding of a LISA operation is described as
a sequence of several coding fields. Each coding field is either a
terminal bit sequence with “0”, “1”, “don’t care”(X) bits or a non-
terminal bit sequence referring to the coding field of a child LISA
operation.

2.3 Activations
A LISA operation can activate other operations in the same or

a latter pipeline stage. In either case, the child operation may be
activated directly or via a group. A group collects several LISA op-
erations, with the elements being mutually exclusive. The elements
are distinguished by a distinct binary coding.

2.4 Behavior Description
The behavior description of a LISA operation corresponds to the

datapath of the ASIP. The behavior description is a non-formalized
element of the LISA language (contrary to formalized elements like
coding, activation etc.), where plain C code can be used. Resources
such as registers, memories, signals and pins as well as coding ele-
ments can be accessed in the same way as ordinary variables.

2.5 Data Flow Graph (DFG) Representation
The behavior section of a LISA operation is converted into

a pure, directed Data Flow Graph (DFG). The graph vertices of���	��� �����
op
��

ic
�

are the basic operators for data manipulation
e.g. additions while edges represent the flow of unchanged data in
form of interconnections of inputs and outputs.

Operators: The following list summarizes the basic classes of
operators represented by graph vertices.

� Commutative n-ary Operator (ALU OP), n ���� Noncommutative n-ary Operator (ALU OP), n ���� Read/Write Access to Registers (RESOURCE,
PIPE RESOURCE) and Memories� Decoding and Control Signal (DECODE, FLUSH,
STALL)� Multiplexer

Note that, unary operators are treated as a special case of Non-
commutative n-ary operator.

Interconnections: Interconnections represent the data flow on
symbol-level representations. The information about the data type
transferred is given by an annotation to the interconnection.

3. Constrained Random Test Pattern Genera-
tion from ADL

The ADL-driven constrained random test generation engine ac-
cepts an instruction-grammar (which is generated automatically

from the ADL) and generates test-cases on the basis of user con-
straints in an GUI-based environment. In this context, we present
the instruction-grammar (as defined in [?]) for a detailed under-
standing.

Instruction-Grammar: The instruction grammar represents the
valid instructions in Backus-Naur Form (BNF) grammar. Table 1
shows an exemplary instruction grammar. For this example, the
instruction word width is 32 bit and there are 16 available registers
indexed by src reg and dst reg.

insn : add dst reg src reg src reg�
sub dst reg src reg src reg

�
nop

add : 0000 0001
sub : 0000 0010
src reg : 0000 xxxx
dst reg : 0000 xxxx
nop : 0000 0000 0000 0000 0000 0000 0000 0000

Table 1. Exemplary Instruction Grammar

3.1 Test Generation Engine (TGE)
There are various features available in the TGE, for fine-tuning

the test-cases so that the processor properties can be conclusively
tested. In the following, the relevant features are listed.

� Instruction Register Biasing: Using the TGE, it is possible
to bias the instruction register with some definite immediate
values.� (Un)Selection of Node: A test-sequence containing specific
node(s) of the instruction grammar can be generated or pre-
vented from being generated. This node may represent a
LISA operation, a register or an immediate.� Branch/Jump Address Biasing: In order to prevent infinite
loops or jumping outside program location, specific con-
straints can be provided to the TGE to bias the jump/branch
address.

For automatic generation of the test-pattern, the instruction
grammar is loaded into an internal DAG. Test patterns are generated
by traversal of this DAG. The nodes and edges of the data-structure
is appropriately tagged with the user-defined constraints. For exam-
ple, to have an instruction with high occurrence frequency, the edge
leading to the instruction is traversed with higher probability than
the other edges.

4. The Tool Flow
In order to attain full statement-coverage in the RTL, it is a pru-

dent idea to target the coverage of the conditional blocks in it. These
conditional blocks in the RTL is represented as the muxes in the cor-
responding data-flow graph of the ADL behavior section. So our
problem reduces to generating test-patterns which verifies individ-
ual muxes, and verification of a mux is possible if it is excited with
all the different control-sequences in the muxes. In the following
subsections we first clearly state the inputs to our developed tool
and outputs we target to deliver.

4.1 Inputs to the Coverage Constraint Generator
(CCG)

The inputs to the CCG are the following (refer figure 2).
1. The DFG(

���	� �
) described in section 2.5.

2. The LISA Operation DAG(
�

) described in section 2.1.
The output of the CCG is the constraint which is a set of LISA oper-
ations and/or instruction-register biases with the desired immediate
value to cover a particular mux in DFG.

Test Pattern

TGE

Constraints

Resource
Access DFG

Activation
Graph

Instruction
Grammar

ADL
model

CCG

Figure 2. The Tool Flow
4.2 Inputs to the TGE

The next part of the tool flow has the TGE which generates the
actual binary test-patterns for the RTL simulation. For this task
it takes the instruction-grammar and the constraints generated by
the CCG. In particular the Instruction Register Biasing and the
(Un)Selection of Node feature of TGE are used.

5. The Algorithm

In this section, we describe the algorithm used in the CCG. The
algorithm is backtracking in nature. Apparently, a SAT-solver could
have replaced the backtracking algorithm. But the reasons for not
using it are as follows,

1. The different heuristics that we have devised add to the ef-
ficiency of the methodology. The run-time of our algorithm
and the coverage results obtained (in section 6) show that the
heuristics are appropriate for the automatic test generation
from the ADL-description of the embedded processors.

2. The mapping of the behavioral constructs of an ADL in a
SAT-solver is also a non-trivial task.

In the backtracking algorithm, since we are targeting the conditional
block coverage, the nodes with label MUX are targeted. Here the
term pathway is defined. A pathway (�), is a sequence of vertices
(��� , ��� , ���	� , ��
��
�), where ��� and ��
���� are the start-node and last-
node respectively (����� ��� � �	� ��� , ���).

������������� �!�"������� � �!�����#�$��
����
A pathway with respect to a particular vertex (���) is �&%(' , i.e. �&%(' :
�����)�����
�*� � . Moreover, the labels of start-node and last-node
are as follows.

+-,�."/0+ � � � � � MUX;
+-,�."/0+ � �
��
� � �21

DECODE, CONST 3
The algorithm has three interweaved parts in it. Before describing
it formally the algorithm is explained intuitively referring to figure
3.

5.1 The Intuitive Idea

1. Backtracking: In the first part we backtrack in the
� �	� �

.
Referring to figure 3, we start the algorithm by initializing the
bottom-most MUX node with its control value ’1’. This ’1’ in the
MUX control demands ’1’ from the AND-labeled vertex. Here we de-
fine the term demand-value (say 4 /	56,�7 4 � ��� �) and node-value (say798 4 / � ,:+ � � � �). Demand-value is the set of expected values for a
node to satisfy the current pathway upto vertex ��� (�&%('), and node-
value denotes the temporary value which is set in a given node for

C 0 1

C 0 1

add_decoded
Decode

alu_decoded
Decode

AND

I0 I1

0x1
Constant

0x0
Constant

1

1

1

1

1

1

Backtracking

Operator Resource

Conflict Checking

Spatio-temporal
Interpretation

Conflict

No Conflict

alu_decoded

add_decoded

insn_reg
0xXXXX1AXX

FE DC EX WB

Cycle -1

Cycle 0

Cycle 1

Commit-table

Figure 3. The Overall Algorithm

the path-satisfaction. Formally,

4 / 5 ,�7 4 � � � � ��1 4 %(' ��4 %(' � � 798 4 / � ,�+ � � %('���� � 3
where, 4�%(' � � 798 4 / � ,�+ � � %('���� � represents that 4�%(' is consistent
with the node-values assigned to the sequence of vertices in � %('���� .
In the fig 3, 4 /	56,�7 4 (AND-labeled vertex) = 1 (since ’1’ in the out-
put of AND-gate is necessary for the control logic value of the MUX
being ’1’). This node temporarily assumes ’1’ in its output(hence,798 4 / � ,:+ = 1) and in its turn propagated ’1’ to both the operands
of this node. In this way, the required value is back-propagated up-
wards until some node with label DECODE or CONST is reached
e.g. here the back-propagation stopped after reaching the following
nodes namely, alu decoded(DECODE), add decoded(DECODE) and
the CONST-labeled nodes.

2. Conflict Checking: It is not always the case that the back-
propagation will be smooth throughout. For example in figure 3,
the demand-value to the CONST node (with constant value ’0’) is
’1’, which is not feasible. Sometimes a node is reached through
other path earlier and assigned a value which is conflicting with the
value assignment in the current path. We denote such cases as node-
value conflicts. Formally, node-value conflict occurs, whenever in
a particular vertex, either of the following is true,

� 798 4 / � ,�+ � � � ����64 / 5 ,�7 4 � � � � . This happens when the node-
value is already assigned by some other path �
	 % ' .

� There exists no 4 % ' (4 %(' � 4 /	56,�7 4 � � � �), such that 4 %(' is
a feasible node-value in vertex ��� . This situation arrived in
CONST node of the figure 3.

In case of conflict in the current pathway, other possible options
are explored by backtracking. It is obvious that such backtracking
might prove to be costly in time-complexity. To speed up the run-
time of the algorithm some efficient heuristics have been devised.

Another possible conflict is mutual exclusion conflict among the
operations. Consider the LISA Operation DAG in figure 1. There,
the two operations ADD and SUB belong to the same LISA group,
signifying that those are mutually exclusive. Formally,

� any two operations which have same parent in the activa-
tion graph are mutually exclusive. i.e. (� ,
��/	7�� � 8 � � � ==
� ,���/	7�� � 8 ��� �) � 5���� /�� � 8 ��� � 8 ��� �

� any two operations whose parents are mutually exclu-
sive are also mutually exclusive.i.e.

5���� /�� � � ,
��/	7�� � 8 �9� � ,
� ,���/	7�� � 8 � � � � � 5�����/�� � 8 � � , 8 � � �

During backtracking, it must be ensured that no two such exclusive
operations are required to be executed at the same cycle.

3. Spatio-temporal Interpretation: Once there is no conflict
in the pathway, i.e. the control value of a particular mux becomes
achievable through identification of some constraints or by set-
ting certain resource biases, we call this pathway as ’conflictless-
pathway’. This ’conflictless-pathway’ is a set of DECODE and
CONST vertices in some particular stage and cycle It is important
to interpret a ’conflictless-pathway’ in a suitable form so that the
final test-patterns can be easily generated using the TGE. We main-
tain a dedicated data-structure - ’commit-table’(in figure 3) for this
interpretation. This commit-table supplies the required constraints
for the TGE as shown in the figure 2. The commit-table consists of
rows (cycles) and columns (stages). Each cell in the commit-table
maintains a list of DECODE, CONST nodes and instruction-register
biases. The DECODE nodes are converted to constraints for gen-
erating appropriate LISA operations and the node-value of CONST
node is assumed to be instruction-register bias.

The location of the vertices in the commit-table is decided by
the spatio-temporality of the vertices. In the graph

� �	���
, each

vertex is associated with a spatio-temporality in the current path-
way. By spatio-temporality, we mean the desired cycle and stage of
occurrence (i.e. the position in the commit-table) of a given node.

Each vertex has a definite stage which determines the stage
in the commit-table too.The cycle of initial MUX-node is 0. For
pipeline registers, the cycle is decided such that the data is avail-
able through propagation without being overwritten in the pipeline.
In case of the non-pipeline registers the overwriting can be eas-
ily avoided by inserting ’nop’ instructions once the desired data is
written on the register. For other kinds of nodes, the cycle is same
as the the cycle of the previous node in the current pathway. The
algorithm is formally stated in algorithm 5.3.

In our example, the commit-table suggests the following con-
straint alu decoded, add decoded (stage: DC, cycle: 0) and an in-
struction register bias (stage: FE, cycle: -1). The complete set rep-
resents one single instruction, as indicated by the diagonal arrow in
the commit-table (in figure 3).

5.2 Some Special Cases

In order to pace up the back-propagation algorithm, some
heuristics are employed. In the following subsections we have de-
scribed some of those heuristics through examples.

C 0 1

C 10

NEQ
I0 I1

0x1
Constant

0x2
Constant

demand-value = 1

0x3
Constant

demand-value = 1

demand-value = 1

demand-value = 0

Figure 4. The block-path heuristic

Block Path Heuristic: While executing the algorithm described
in section 5, it is important to minimize the back-tracking. Some-
times, it becomes evident from the scenario that no further back-
tracking can lead to a feasible

798 4 / � ,�+ � ��� � which satisfies �&%(' .
A typical scenario is shown in the following example. In figure 4 it

can be observed that the demand-value (’0b1’) propagated from the
NEQ node to the MUX cannot be achieved since both the operands of
the MUX is of type CONST having other values (’0b3’ and ’0b2’).
Unless, we block the current pathway, the NEQ-node will continue
sending other infeasible demand-values. So the path is blocked (or
’flagged’) so that no more unnecessary iteration takes place in this
pathway. Formally, the condition for blocking a path at node � � is
following,

� +-,�."/0+ � � � � ���������	� ��
 � 798 4 / � ,:+ � � � � does not satisfy � %(' �

Constant Lookahead Heuristic: Sometimes, it becomes totally
unnecessary to iterate over a pathway with all the possibilities. In
the
���	���

, the ALU operator nodes often have constant nodes as
one of the operands. In this heuristic, the constant is lookahead-
ed in order to determine a suitable demand-value. For example, a
NEQ operator has the demand-value ’0b0’ and it has one constant
operand with value ’0b0’. Hence, it is clear that ’0b0’ needs to be
sent in the pathway of the other operand.

5.3 The Formal Algorithm

In this subsection, the algorithm is stated formally. The BACK-
TRACK algorithm given below takes current node(curr v), previous
node (prev v) the demand-value (demand value) as the inputs. The
term spatio-temporality of a node is used here. Spatio-temporality
contains the information regarding the cycle of occurrence and the
stage to which the node belongs to. This spatio-temporality needs
to be computed for every node (appearing in � %(' for assigning its
position in the commit-table. Moreover, to find the write access
to a resource, it is necessary to find out the corresponding list of
RESOURCE-nodes (� � � � / ��/�
�8 � ����/ + �
 ��������� %). This list needs to
be ordered according to a priority criterion. This formal algorithm
is presented in algorithm 5.2 below.

ALGO. 5.1. Backtrack

Backtrack(curr v, prev v, demand value)
begin
1: curr spatio temporality � AdjustSpatioTemporality(prev spatio temporality).
2: CheckConflict(curr v.node value, demand value)

// required for checking node-value conflict
2.1: if(conflict) return conflict.

3: If(��������������� �!� "$# = DECODE)
3.1: Check for mutual-exclusion conflict in diagonal cells containing the curr v.
3.2: If(no conflict)

3.2.1: %�&!'$�("��)�*����� �+� "$#,�-'$.0/$121 3 , ('$.*/$1�1 3546'$�(78�$%�'	����� �!� "$#)
3.2.2: Commit in the commit-table.

3.3: Else
3.3.1: return conflict.

4: If(��������������� �!� "$# = CONST)
4.1: %�&!'$�("��)�*����� �+� "$#��-' .0/$121 3 , (' .*/$1�1 3 46'$�(78�$%�'	����� �!� "$#)
4.2: return

5: If (��������������� �!� "$# = RESOURCE or PIPE RESOURCE)
5.1: Check if the node enabling curr v can be satisfied.
5.2: If(read-resource node)

5.2.1: 9:�!;=<0� �!�?>�&?� �)�(� �=;@>�< .0/$121 3 � SearchWriteResource(curr operation).
5.2.2: If no write-resource exists, commit. // usually this is instruction memory
5.2.3: Try all write-resource until A	�)<0BC9D�$E is satisfied.
5.2.4: If conflict all the pathways return conflict.

5.3: If(write-resource node)
5.3.1: Back-Propagate the demand value.
5.3.2: If conflict in all the paths return conflict.

6: If (��������������� �!� "$# = MUX)
6.1: Check if there exists any satisfiable node-value in '$�(78�$%�'	����� �!� "$#
6.2: Appropriately try to set the control of the curr v

by back propagating the required control value.
6.3: If conflict in all the paths return conflict.

7: If (��������������� �!� "$# = ALU OP)
7.1: Apply constant lookahead if one of its operands is CONST.
7.2: If there exists no feasible ' .*/$1�1 3 (' .*/$1�1 3 48'$�(78�$%F'	����� �+� "$#)

apply block-path heuristic and return conflict.
7.3: If conflict in all possible variations, return conflict.

end

Next we describe the SearchWriteResource algorithm. We de-
fine, � � � � � � when there is a path from node (say � �) denoting8 � /��0,�� � 8�7 � to node (say ���) representing

8 � /��0,�� � 8�7 � in the LISA
Operation DAG(

�
). Thus, parent and ancestor operations in the

�
are defined as follows.

� ,
��/	7�� � 8 � /���,�� � 807 � � ��1 8 � /��0,�� � 807 � � s. t.
/ � � � � � � � �
�� � � 3 (1),�7G��/�
 ��8 � � 8 � /��0,�� � 8�7 � � �21 8 � /���,�� � 807 � � s. t. � � � �$� � � � 3 (2)

ALGO. 5.2. SearchWriteResource

SearchWriteResource(curr operation)
begin
1: If(label = PIPE RESOURCE)

1.1: First priority to nodes with operation 4
parent(curr operation) and in immediately previous stage.

1.2: Second priority is given to write-resource nodes in other previous stages
and operation 4 ancestor(curr operation).

2: If(label = RESOURCE)
2.1: Priority to nodes in previous stages.
2.2: Second priority is given to nodes in current and future stages.

end

Next, we present the algorithm for placement of the vertices in
the commit-table for the spatio-temporal interpretation of the path-
way.(refer 5). As mentioned earlier, the determination of the stage
is straight-forward since that is determined by the stage informa-
tion embedded within each vertex. Hence, only the cycle-selection
needs to be elaborated. It takes the current vertex (curr v) and
the previous vertex (prev v) (whose cycle and stage are given by
prev stage and prev cycle) as the inputs.

ALGO. 5.3. DetermineCycleInCommitTable

DetermineCycleInCommitTable(curr v, prev v)
begin
1: If (label = PIPE RESOURCE)

1.1: if (curr stage preceeds prev stage)
1.1.1: if (curr v = �$%��(��>(<0&?� (prev v)) // place it in the diagonal

1.1.1.1: curr cycle � prev cycle - (prev stage - curr stage)
1.1.2: else // it is not feasible since the pipeline will be overwritten

1.1.2.1: return error
1.2: else if(curr stage succeeds prev stage)

1.2.1: curr cycle � prev cycle

2: If (label = RESOURCE)
2.1: available cycle � cycle of the topmost cell in the column curr stage - 1
2.2: if (prev stage follows curr stage)

2.2.1: if (curr v = �$%��(��>(<0&?� (prev v))
2.2.1.1: curr cycle � prev cycle - 1 // fill the diagonal

2.2.2: else
2.2.2.1: desired cycle � prev cycle - 2
2.2.2.2: if(available cycle H desired cycle)

2.2.2.2.1: curr cycle � available cycle
2.2.2.3: else

2.2.2.3.1: curr cycle � desired cycle
2.3: else

2.3.1: desired cycle � prev cycle - 1
2.3.2: if (available cycle H prev cycle)

2.3.2.1: curr cycle � available cycle
2.3.3: else

2.3.3.1: curr cycle � desired cycle
end

6. Case Study
The automatic test pattern generation approach, presented in

this paper, are tested with two different pipelined RISC proces-
sors. The first one, LTRISC, is a 32-bit 4-stage pipelined RISC

processor with basic support for arithmetic, load-store and branch
operations. LTRISC contains mechanism for automated detection
of pipeline data-hazards. All the instructions of LTRISC are condi-
tional instructions, preventing straight-forward high-coverage test-
case generation. The ICORE [15] architecture is dedicated for Ter-
restrial Digital Video Broadcast (DVB-T) decoding. It is based on
a pipelined Harvard architecture implementing a set of general pur-
pose arithmetic instructions as well as specialized trigonometric op-
erations. Other notable features in ICORE, presenting hindrance to
a smooth test-pattern generation, includes zero-overhead-loop, ex-
tensive branch instructions, complex instructions involving nested
data-flow. A brief summary of the processors is shown in table 2.

ICORE LTRISC

Basis Architecture 21-bit RISC 32-bit RISC
Pipeline Stages 4 4
Lines of LISA Code 2200 1838
Lines of Verilog Code 25200 9501

Table 2. Benchmark Processors
The test program for both the architectures are automatically

generated using the flow described in this paper. The run-time of
the backtracking algorithm is observed to be extremely low, due to
the heuristics applied in the process. For both the architectures, the
complete test program is generated in less than a second on a AMD
Athlon XP 2600+ Processor (1916 MHz, 512 MB RAM) running
SuSE Linux 9.2 operating system. The total number of instructions
generated for ICORE is 727, whereas for LTRISC, 132 instructions
are generated. In order to avoid unnecessary large loops or jump-
ing outside program location, the regular features from TGE e.g.
branch address biasing are extensively used during coverage con-
straint generation. Actually, it gave the complete test-automation
tool an immense advantage to have a constrained random test pat-
tern generator at the back-end.

The test programs are then fed to the HDL descriptions and the
coverage metrics are measured using Synopsys VCS tool flow [16].
The overall results of the block coverage and statement coverage
are presented in the following table 3.

ICORE LTRISC
RTL Block Coverage 96.87% 97.71%
RTL Statement Coverage 98.42% 98.52%

Table 3. Results of Coverage Measurement
By checking the individual sections of the two processors, it

turned out that the instruction behaviors are completely covered.
Actually, those are the conditional blocks explicitly targeted. How-
ever, the register file contained several general purpose registers,
which remain uncovered. For example, the following piece of as-
sembly code is generated to cover pipeline data-hazard in LTRISC.

r0 = 1600
r0 = (r2 � 1685)
r0 = (r0 � 1529)

Here, register r0 is used to model the data-hazard in compari-
son instructions of LTRISC. Similarly, the coverage of conditional
blocks presented the test generator with varied choices of general
purpose registers and one is randomly picked up. This assured full
coverage of the instruction behaviors but, the coverage of the reg-
ister files is still at the best constrained random. This resulted in
less than 100% block coverage for LTRISC. However, the register
file is regular in their structure and their coverage can be achieved
by writing generic test-pattern generation subroutines. For ICORE,
the overall block coverage and statement coverage is comparable

to LTRISC. However, ICORE contained few uncovered conditional
blocks in the instruction behavior. Closer inspection revealed that
those blocks are conditioned by I/O pins. Obviously those could
not be controlled by the instruction grammar-based TGE.

It is interesting to compare the advantage of the automated test
pattern generator with the manual constrained random test pattern
generation approaches. By allowing an experienced processor de-
signer to use the ADL-driven constrained random TGE (the back-
end of the presented tool-flow), it took 2-3 days to achieve similar
coverage results. A completely manual creation of the test pattern
for achieving full instruction coverage, without the deep knowledge
of the target processor, will certainly take much longer. Consider-
ing the test pattern is generated within few seconds - the importance
of this work is obvious.

7. Conclusion and Future Work
This paper presents a fully automatic test generation framework

for functional verification of modern embedded processors. The
test generation is driven by ADL, a high level processor description
formalism. This allows an early test generation mechanism, which
ensures high coverage in lower level of abstraction e.g. RTL. The
case study with two simplescalar RISC processors show the efficacy
of this framework.

In future, this tool will be tested with more complex processors.
The influence of this test generation over other coverage metrics
like fsm coverage, toggle coverage will be studied, too.

8. REFERENCES

[1] P. Mishra et al. A top-down methodology for validation of microprocessors. In
IEEE Design and Test of Computers (Design and Test), pages 122–131, 2004.

[2] CoWare/LISATek. http://www.coware.com.
[3] Target Compiler Technologies. http://www.retarget.com.
[4] D. Kammler, E. M. Witte et al. ASIP Design and Synthesis for Non Linear

Filtering in Image Processing. In Design, Automation & Test in Europe (DATE),
2006.

[5] T. Kempf, M. Dörper et al. A Modular Simulation Framework for Spatial and
Temporal Task Mapping onto Multi-Processor SoC Platforms. In Proceedings of
the Conference on Design, Automation & Test in Europe (DATE), 2005.

[6] Calypto Design Systems. http://www.calypto.com/.
[7] OpenVera. http://www.open-vera.com/.
[8] H. Koo and P. Mishra. Functional Test Generation using Property

Decompositions for Validation of Pipelined Processors. In DATE ’06:
Proceedings of the conference on Design, automation and test in Europe, 2006.

[9] F. Corno et al. Automatic test program generation: A case study. In IEEE
Design and Test of Computers, 2004.

[10] A. Adir, E. Almog et al. Genesys-Pro: Innovations in Test Program Generation
for Functional Processor Verification. IEEE Design and Test, 2004.

[11] O. Luethje. A methodology for automated test generation for lisa processor
models. In The Twelfth Workshop on Synthesis And System Integration of Mixed
Information technologies, Kanazawa, Japan. Synthesis And System Integration
of Mixed Information technologies (SASIMI 2004), October 18-19, 2004.

[12] P. Mishra and N. Dutt. Functional coverage driven test generation for validation
of pipelined processors. In Design Automation and Test in Europe (DATE),
pages 678–683, 2005.

[13] F. Fallah, S. Devadas and K. Keutzer. Functional Vector Generation for HDL
models using Linear Programming and 3-satisfiability. In DAC ’98:
Proceedings of the 35th annual conference on Design automation, 1998.

[14] A. Chattopadhyay, A. Sinha, D. Zhang, R. Leupers, G. Ascheid, H. Meyr.
Integrated Verification Approach during ADL-Driven Processor Design. In
Seventeenth IEEE International Workshop on Rapid System Prototyping, 2006.

[15] T. Gloekler and S. Bitterlich and H. Meyr. ICORE: A Low-Power Application
Specific Instruction Set Processor for DVB-T Acquisition and Tracking. In
Proc. of the ASIC/SOC conference, Sep. 2000.

[16] Synopsys. VCS
http://www.synopsys.com/products/simulation/simulation.html.

