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Abstract

Nowadays, Architecture Description Languages (ADLs) are
getting popular to achieve quick and optimal design convergence
during the development of Application Specific Instruction-Set
Processors (ASIPs). Verification, in various stages of such ASIP
development, is a major bottleneck hindering widespread accep-
tance of ADL-based processor design approach. Traditional veri-
fication of processors are only applied at Register Transfer Level
(RTL) or below. In the context of ADL-based ASIP design, this
verification approach is often inconvenient and error-prone, since
design and verification are done at different levels of abstrac-
tion. In this paper, this problem is addressed by presenting an
integrated verification approach during ADL-driven processor de-
sign. Our verification flow includes the idea of automatic assertion
generation during high-level synthesis and support for automatic
test-generation utilizing the ADL-framework for ASIP design. We
show the benefit of our approach by trapping errors in a pipelined
SPARC-compliant processor architecture.

1. Introduction
The growing design complexity coupled with diverse, narrow-

ing application domains have increased the importance of verifi-
cation in the design cycle of today’s embedded processors consid-
erably. The designer needs to deliver the optimum performance in
a short time without compromising the verification issues. While
optimal processor performance is achieved by flexible solutions
like introducing special instructions into the Instruction-Set Ar-
chitecture (ISA), the task of verification is simplified by starting
from pre-verified IP blocks. As a result, the processor design com-
munity have emerged with distinct trends in the processor design
approach. At one extreme, the processor design is performed on a
high level of abstraction, thereby allowing fast design space explo-
ration and ample scope of optimization for target-specific archi-
tectures. Architecture Description Languages (ADLs) offer one
promising avenue for efficient design of an highly application-
specific processor. ADLs [1] [2] [3] are employed to model the
Application Specific Instruction-Set Processor (ASIP) at a higher

level of abstraction. These ADL-based approaches, require to pass
through several synthesis steps and thereby, come with a costly
verification effort. On the other extreme, the processor design is
simplified by limiting the choice of design within a range of pre-
verified IPs or allowing fine-tuning of an existing template proces-
sor core [4] [5]. This template-based approach allows quick ver-
ification with limited choice of application-specific optimizations.
Since, the major part of the processor is available as pre-verified
IP, the verification concern is focussed on the possible designer-
defined configurations or the extensions of the basic template. In
order to reach the high flexibility like ADLs, more and more con-
figurations need to be supported, eventually increasing the veri-
fication effort. Clearly, there is a trade-off between optimization
and verification effort.

Independent of the two separate approaches, verification has
received continuous attention from EDA researchers. With the
traditional processor design approach, the verification is primarily
done in the Register Transfer Level (RTL) or below. Simulation-
based verification is a commonly known verification technique.
In this domain, test patterns targeted to detect faults are fed into
the design-under-test. However, the number of exhaustive test pat-
terns being huge, automated test pattern generation approaches are
adopted. On the other hand, with the advent of hardware verifi-
cation languages like Vera, e, designed for automatic verification
environment, has tried to blend simulation based approach with
formal verification approaches. Among the semi-formal method-
ologies, assertion-based verification achieved prominence. As-
sertions are properties, which expresses the designers’ intent in a
purely mathematical language. The properties, expressed as as-
sertions, help the verification engineer in a large way because, the
latter can identify the designers’ intent in a clear logical manner.

In essence, varied verification approaches are making their way
into commercial and academic acceptance. Contemporarily, in or-
der to handle the demanding design complexity, the designers are
seeking their way to express the design in a high level of abstrac-
tion, which sometimes come at the penalty of longer verification
cycle. With traditional verification approach, the ADL has to be
synthesised to generate the RTL and then RTL-based verification
methodologies need to be applied. In this approach, the ADL-
based information about the architecture is often lost in the syn-
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thesis process thereby, making the RTL-driven verification pro-
cess imprecise and computationally complex. An integrated ver-
ification flow merging the concepts of ADL and different genres
of verification is of high interest for fast and error-free processor
design. We address this issue in this paper. Our work focuses
on the ADL-based approach, for which there is a strong need for
seamless and robust verification methodology. We chose the ADL
LISA for our work. We have integrated a mix of semi-formal and
simulation-based verification methodology in our ADL-based ver-
ification approach. In summary, the contribution of this paper is to
present:

• An ADL-driven assertion-based verification methodology.

• A semi-automatic user-constrained test generation method-
ology for ADL-driven ASIP design.

Our work complements the existing ADL-based processor de-
velopment flow by adding the verification flow. The components
of the verification framework are completely derived from the
ADL description, thereby minimizing the chances of design in-
consistency. As a case study, we chose a 7-stage, SPARC v8 com-
patible processor and showed the strength of our approach by un-
covering hidden and injected errors.

The rest of the paper is organized as follows: section 2 intro-
duces the previous work in this domain. Section 3 discusses the
basic features of LISA. Section 4 describes the complete verifi-
cation flow in detail. Section 5 elaborates and analyzes our case
study. We conclude with the summary and outlook.

2. Related Work
Processor verification had always remained a major issue for

the research community from the inception of processor design.
Evolving processor design concepts e.g. pipelining and VLIW
made the task of verification even more demanding, thereby ren-
dering exhaustive manual testing to be an impractical and ineffi-
cient solution. Consequently, numerous verification approaches
and techniques emerged over the past decades. Here, we limit our
discussion among ADL-based verification approaches.

ADL-based Verification Techniques has received serious re-
search interest in recent years. Mishra et al. [6] proposed a graph-
based functional test-case generation. They transformed the pro-
cessor description, written in EXPRESSION ADL [7], into a graph
consisting of nodes (representing functional units and storages),
and edges (representing pipeline operations and data-transfer op-
erations). By the help of that graph, they defined a graph-based
coverage metric, which in turn, led to a set of test-patterns. In the
domain of formal verification, Mishra et al. [8] successfully trans-
formed an ADL representation into an equivalent SMV represen-
tation and used SMV-based model checking tools to generate test-
patterns. In another context, Luethje [9] approached the problem
from a different perspective. For the ADL LISA [10], he analysed
the behavior section of the LISA model to achieve 100% ADL-
code coverage. In another recent advancement, Luethje demon-
strated the usage of the Genesys test generator [11] for processors
described in LISA [12]. The retargetable test program generator
from the ADL nML [13] comes close to our work, where an auto-
matic selective and/or random test-pattern generation is proposed.

In summary, there are existing ADL-based verification ap-
proaches. However, none of the above-mentioned ADLs support
automatic generation of assertions from the ADL to the best of

our knowledge. ADL EXPRESSION used assertions during their
top-down validation flow. In their approach, the ADL description
automatically generates an RTL description. A symbolic simula-
tor automatically generates property/assertion from the generated
RTL description [14] (figure 2). The drawback with this approach
is that the generation of property/assertion is done from the auto-
matically generated RTL and not from the ADL. Therefore, this
approach heavily relies on the correct generation of the RTL from
the ADL. Understandably, in their approach the automatically gen-
erated RTL is considered as golden reference, which is used to ver-
ify manually implemented RTL design. In our approach, we take it
a step higher and try to verify the correctness of the ADL descrip-
tion itself. Therefore, it is imperative to automatically generate the
assertions from the ADL, as proposed in this paper.

In the domain of ADL-based automatic test pattern generation,
there are existing methodologies [6] [15]. We propose an alterna-
tive ADL-based test-generation methodology, where the user can
strongly influence the test-pattern generation. The existing test-
generation methodologies focus on the statement coverage [9] or
functional coverage [15]. These approaches, though introduces
novel test pattern generation techniques, allows little user inter-
action in the process. Our approach is semi-automatic in nature,
where user deals with the instruction grammar to influence the test
patterns. This is closer to the approach of IBM Genesys [11] but,
our approach does not require separate modelling of architecture
or test template.

3. Brief Overview of LISA
In this section, a brief overview of the architecture description

language LISA is provided. Only those language elements, which
are relevant for this paper are covered here.

3.1 LISA Operation Graph
In LISA, an operation is the central element to describe the

timing and the behavior of a processor instruction. The instruction
may be split among several LISA operations. The resources (reg-
isters, memories, pins etc.) are declared globally in the resource
section, which can be accessed from any LISA operation.
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Figure 1. LISA Operation DAG Example
The LISA description is based on the principle that a specific

common behavior or common instruction encoding is described
in a single operation whereas the specialized behavior or encod-
ing is implemented in its child operations. With this principle,
LISA operations are basically organized as an n-ary tree. How-
ever, specialized operations may be referred to by more than one
parent operation. The complete structure is a Directed Acyclic
Graph (DAG) D = 〈V, E〉. V represents the set of LISA oper-
ations, E the graph edges as set of child-parent relations. These
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relations represent either Behavior Calls or Activations, which re-
fer to the execution of another LISA operation. Figure 1 gives an
example of a LISA operation DAG. As shown, the operations can
be distributed over several pipeline stages. A chain of operations,
forming a complete branch of the LISA operation DAG represents
an instruction in the modelled processor.
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Arithmetic

01 Add_Sub
����

XXXX

����

XXXX

���

XXXX

Logical

10
Shift or AND 

…

Control

11
JMP or CALL 

…

Add

11

Sub

00

011

Load

Figure 2. LISA Coding Tree Example
A LISA Operation contains different subsections to capture the

entire processor behavior. The ones relevant for RTL synthesis are
discussed below.
Instruction Coding Description: The instruction encoding of a
LISA operation is described as a sequence of coding fields. Each
coding field is either a terminal bit sequence with “0”, “1”, “don’t
care”(X) bits or a nonterminal bit sequence referring to the coding
field of another child LISA operation. An example of a coding tree
is given in figure 2. In this example, the Add and Sub operations
have only terminal codings whereas Load, Arithmetic, Logical and
Control consist of both terminal and nonterminal coding fields.
Activations: A LISA operation can activate other operations in
the same or a later pipeline stage. In either case, the child oper-
ation may be activated directly or via a group. A group collects
several mutually exclusive LISA operations.
Behavior Description: The behavior description of a LISA op-
eration corresponds to the datapath of the processor. Inside the
behavior description plain C code can be used. Resources such as
registers, memories, signals and pins as well as coding elements
can be accessed in the same way as ordinary variables. The behav-
ior section of every LISA operation is transformed into a functional
block in the RTL datapath.

4. Integrated Verification Environment
In this section, we elaborate the flow and the major components

of the proposed verification scheme in detail. We start with the
dynamic flow of the scheme, followed by the detailed discussion
on automatic generation of test-cases and assertions, to support the
multiple stages of verification.

4.1 The Verification Flow
The flow of our verification scheme is as shown in figure 3. At

the beginning, the processor description is written in LISA. The
RTL description (along with Assertions), the Instruction-Set Sim-
ulator and the Instruction-Grammar are automatically generated
from the LISA model. We also built up a library of assertion-
modules containing the assertions, which is written in OVA and
SVA. The assertion library contain basic static and temporal asser-
tions allowing e.g. comparison of signals. The assertion modules
from this library are used as templates to instantiate actual asser-
tions inside the RTL description. The instruction-grammar is fed

LISA model

Instruction-Grammar 

Assertions

Instruction-Set 

Simulator

RTL
Test Generation 

Engine

Simulation-based

Verification

Assertion-based

Verification

Generic 

Assertion Library

Figure 3. Complete Verification Flow

to the Test Generation Engine (TGE) to churn out test-cases auto-
matically. In this context, we define the instruction-grammar.

Instruction-Grammar: The instruction grammar represents
the valid instructions in Backus-Naur Form (BNF) grammar. In
other automatic test generation approaches, the instruction-set hi-
erarchy is either manually developed [16], or an instruction-library
needs to be set up [17]. In Genesys-Pro [11] each instruction needs
to be manually modelled in C++, introducing more complex se-
mantics into it. Here, we automatically generate the instruction-
grammar from the ADL operation-graph (see section 3.1). Table
1 shows an exemplary instruction grammar. For this example, the
instruction word width is 32 bit and there are 16 available registers
indexed by src reg and dst reg. The test generation engine
loads this instruction grammar in an internal data-structure. Note
that, this instruction grammar is essentially an instruction coding
tree (like figure 2) represented in another form.

insn : add dst reg src reg src reg
‖ sub dst reg src reg src reg
‖ mac dst reg src reg src reg src reg
‖ nop

add : 0000 0001
sub : 0000 0010
mac : 0000 0011
src reg : 0000 xxxx
dst reg : 0000 xxxx
nop : 0000 0000 0000 0000 0000 0000 0000 0000

Table 1. Exemplary Instruction Grammar

Formally, the instruction grammar can be defined as following.

• Terminal (T): It is either ’0’ or ’1’ or ’x’ (don’t care).

• Non-Terminal (NT): Syntactic variables that denote the sets
of strings. (containing terminals and/or non-terminals).

• Production (S) : P : α1α2...αn, where αi ∈ NT \ {P}
or αi ∈ T , P ∈ NT , ∀i ∈ N , where N is set of positive
integers. In this context, we define P as the Producer.

• Rule: A set of productions (S) having the same producer P .
Formally, S = {Si | Pi = P , ∀i ∈ N},

where Si → Pi : α1α2...αn

First phase of verification: In the first phase, we run the test-
cases to simulate the HDL code. We propose a definitive set of
abstract fault models, targeted to cover typical processor errors.
On the basis of that, assertions are generated automatically. In
the HDL simulation, these assertions help to dynamically iden-
tify RTL bugs. The RTL simulation contributes in the coverage
analysis, which in turn, may be taken as a feedback for the test
generation scheme.
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Second phase of verification: In the second phase, we sepa-
rately run the instruction-set simulator and the RTL simulator, with
the same set of test-cases, and compare the processor states in each
cycle, as obtained in them. If the equivalence in the simulation-
based verification phase is established, it is likely that the pro-
cessor is working perfectly, otherwise, the design calls for further
re-modelling and verification cycles.

In the following subsections, we discuss, in detail, the features
of the TGE, the basis and complexities of automatic generation of
assertions and the simulation-based verification flow.

4.2 Test Generation Engine (TGE)

Instruction-Grammar 

Instruction-Set
SimulatorAssertions

RTL

Test Generation 
Engine

Coverage
Analysis

Latency
Information

Manual
Automatic

Figure 4. Test Generation Engine
This TGE works in the front-end of the verification-platform.

Figure 4 explains the environment of the TGE. It receives
the instruction-latency information alongwith the instruction-
grammar to produce test-cases for the RTL as well as instruction-
set simulators. Although, the generated test-cases are not mean-
ingful applications, with careful directives, as we will show later,
the TGE mimics the realistic application-like scenario quite effec-
tively. In this regard, the TGE can effectively be used by a designer
to prepare synthetic testbenches for any given processor. The ADL
code coverage (obtained from the instruction-set simulation), the
RTL statement coverage (obtained from the RTL simulation) and
the latency information are manually fed to influence the nature
of generated test patterns. The TGE is equipped with different
constraint modes. By constraint mode, we mean the degree of re-
striction imposed on the process of generation of the test-cases. It
can be anywhere between a fully directed and a fully randomized
one.

Features of the TGE: There are various features available in
the TGE, for fine-tuning the test-cases so that the processor prop-
erties can be conclusively tested. In the following, the features are
discussed.

Fully exhaustive test-case: The engine can generate fully ex-
haustive test case for an instruction grammar, i.e. all possible valid
instructions of an ASIP, which is always a finite number.

Size Constraint: The designer might wish to test the design
with an appropriate number of instructions where the nature, con-
text, occurrence-frequency of instructions can be precisely con-
trolled. The TGE supports such verification intent, by allowing
the user to determine the number of instructions.

insn : mac bypass reg src reg src reg
‖ add dst reg src reg bypass reg

bypass reg : 0000 0101

Table 2. Overriding rules

Storage Access Biasing: Data-forwarding is a feature often
found in ASIPs. To verify data-hazard handling capability in the

bypass_reg

mac

0000 0011

insn 1 insn 2

dst src

src src dst srcadd

0000 0101 0000 xxxx 0000 xxxx 0000 0001 0000 xxxx 0000 xxxx 0000 0101

Figure 5. Grammar-Rule Overriding

processor, we need to create an environment where same storage
element (register/memory unit) is accessed in consecutive instruc-
tions. The TGE helps the designer to create those situations, in
the following manner. Suppose, the following assembly language
program is desired,

mac r5 〈src1 reg〉 〈src2 reg〉
add 〈dst reg〉 〈src1 reg〉 r5

By using the technique of instruction-grammar-rule overrid-
ing shown in figure 5, one can modify/add the following rules, as
shown in table 2 to restrict the test-case productions. The last rule
which is added to the rule database elegantly restricts the TGE to
generate instructions having r5 as one of its source/destination
register.

Instruction-Group Occurrence Frequency Biasing: Within
the scope of this feature, we can define a group of instructions,
which are functionally similar in nature. Typical examples can
be load-store operations, ALU operations, etc. It is very likely
that few instruction-groups occur more frequently than some other
instruction-groups. To mimic those situations, one can identify
them and form instruction-groups, by the technique of overriding
grammar-rules, and appropriately bias them, to occur in the de-
sired frequency.

Instruction Occurrence Frequency Biasing: In some cases,
we need to control the occurrence frequency of some specific in-
structions and not an instruction-group. Using the TGE, it is possi-
ble to bias the occurrence frequency of add or sub in the generated
test-cases. The input of the TGE simply require the frequency bi-
ases of the chosen instructions, based on which it determines the
suitable test-case. Moreover, the TGE supports the inquisitive de-
signer to bias the instructions at a finer level of granularity. By
this statement, it is meant that, the TGE can influence occurence
frequency of JMP 〈imm〉 over JMP 〈reg〉.

Selection of instruction: A test-sequence containing specific
instruction(s) can be generated. This is useful in order to test the
processor behavior for that particular instruction.

Latency Information Insertion: If one instruction blocks a re-
source then, the following instruction waits for a specific number
of machine-cycles, so that the execution of preceding operation
terminates. The number of cycles, for which the latter instruction
should wait, is known as the latency period of an instruction. The
TGE supports such kind of test-case generation injecting the nop
operation automatically if, the latency information is provided.

Automatic Test-Pattern Generation: For automatic genera-
tion of the test-pattern, the instruction grammar is loaded into an
internal DAG. Test patterns are generated by traversal of this DAG.
The nodes and edges of the data-structure is appropriately tagged
with the user-defined constraints. For example, to have an instruc-
tion with high occurrence frequency, the edge leading to the in-
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struction is traversed with higher probability than the other edges.
In case of an overwritten grammar rule, an entire sub-branch of
the data-structure is replaced with the DAG of the new rule. The
supports provided by the TGE necessitates traversal of the instruc-
tion grammar which is in essence a DAG. Thus the worst-case
time-complexity is same as that of performing DFS in a graph i.e.
O(n×e), where n and e are the cardinalities of set of vertices and
edges in the graph, respectively.

4.3 Assertions
Assertions are logical, sentential forms which are useful in ex-

pressing design properties explicitly. The assertions help the de-
signer to express his verification intent from a higher level of ab-
straction. For elaboration, an assertion can be the following. At
any instant of time, a unique address of the memory, can be written
by only one hardware component. The major benefit of using such
assertions is the formal rigor embedded in it. Assertions can be
broadly classified into two groups, namely, static and temporal as-
sertions. Static assertions do not include time, while, temporal as-
sertions are useful in expressing properties which depend on time,
i.e. the clock. In our methodology, we have used both static, as
well as, temporal assertions, to detect the following abstract fault
models.

Abstract Fault Models: In this part, we discuss the various
fault models which are covered by our methodology. These ab-
stract fault models are the potential faults likely to be discovered
in an ASIP. Similar fault models have been used to derive test-
patterns in [15]. The contribution of these fault models in this
paper is that we derive the assertions and not the test programs.
Therefore, our approach is complementary to the test-pattern gen-
eration approach developed in [15].

Structural Fault Models: Structural fault models are those
which are embedded in the micro-architecture. These faults are
not always easy to be trapped at the ADL level. Usually, these
bugs are detected during the RTL simulation phase since, the con-
trol flow of the ASIP needs to be monitored. From this perspective,
we present the following fault models.

• Fault Model for Register Transfer Operations: The registers
properly load a value after it is written to and provides the
correct value after it is read from. Otherwise, the behavior
is faulty. In order to detect whether more than one signal
is trying to write simultaneously to a given register, the dy-
namic exclusiveness of available enable-write signals has to
be verified.

• Fault Model for Register Write Operations: The behav-
ior is faulty, if two or more instructions try to write the
same register during the same cycle. In order to detect
whether more than one signal is trying to write simultane-
ously to a given register, the dynamic exclusiveness of avail-
able enable-write signals has to be verified.

• Fault Model for Pipeline Control Operations: During
stall/flush the pipeline behaves in a special manner. While
the processor is stall-ed, the content of the pipeline registers
do not change. Again, during flush, the contents of affected
pipeline registers get replaced by zero. This behavior, if not
satisfied, leads to a fault.

• Fault Model for Single Branch Execution: Due to partial or
complete similarity in the code contribution of two instruc-
tions, the decoder might activate more than one execution

sequence simultaneously (in a single-threaded processor).
The model is declared faulty under such circumstances. To
ensure execution of a single, valid chain of units, the ex-
clusiveness of activated signals, as well as, non-existence of
hanging activated signal should be ensured.

• Fault Model for Memory Accessing: A memory unit having
multiple write-ports cannot be written in the same address at
any instant of time. Moreover, the program memory should
contain meaningful data. This can be verified by comparing
the logical conjunction between the equivalence of enable-
write signals and that of the addresses with false. Moreover,
in order to ensure that the program memory contains mean-
ingful data, the instruction-register contents can be checked
to contain a non-nop instruction, at least once, during the
whole span of the simulation.

Behavioral Fault Models: Behavioral fault models are those,
which are usually difficult to track down in the micro-architecture
because of the involved data-flow analysis required. For elabo-
ration, there can be a particular signal set to high resulting in
some other signal to be set high for next 5 clock-cycles, other-
wise there is a fault. Intuitively, trapping of such design-violations
requires involved semantic behavior analysis of each instruction
in the ADL level, as they are not generic in nature. We provide
the designer with the required platform,(i.e. the assertion library)
with the help of which one can manually insert assertions in the
generated HDL.

Automatic Generation of Assertions: In order to generate the
assertions, we resort to static ADL analysis techniques [18]. By
static analysis of a LISA model, we derive a global conflict graph,
where a conflict edge between two LISA operations indicates that
those are not mutually exclusive.

if (cond_1)
reg[addr_1] = rval_1;

if (cond_2)
reg[addr_2] = rval_2;

// first write access 
if (cond_1) then
reg_data_1_in = rval_1;
EW_reg_1_in   = ‘1’;
AW_reg_1_in   = addr_1;

end if

// second write access
if (cond_2) then
reg_data_2_in = rval_2;
EW_reg_2_in   = ‘1’;
AW_reg_2_in   = addr_2;

end if

// automatically generated assertion
assert ((EW_reg_1_in & EW_reg_2_in & 

(AW_reg_1_in == AW_reg_2_in)) == 0)

ADL description RTL description

Figure 6. Automatic Assertion Generation from ADL
One processor instruction is distributed in the LISA descrip-

tion over a chain of LISA operations. For a single-threaded pro-
cessor, it is not possible to execute more than one instruction in-
side one pipeline stage. The afore-mentioned fault model for sin-
gle branch execution is covered by a structural assertion, which
checks if two or more exclusive LISA operations are activated at
the same instance. The fault model for memory access is cov-
ered by another assertion, which runs through all possible combi-
nations of memory access from the processor and simply asserts
if more than one enable write memory signal is high at the
same instance alongwith a conflicting memory address location.
The Fault Model for Register Transfer Operations is detected by
structural assertions similar in nature. In order to detect whether
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more than one signal is trying to write simultaneously to a given
register, the dynamic exclusiveness of the available enable-write
signals is checked.

One example of automatic assertion generation is shown in fig-
ure 6. Here, the the ADL description of register write access and
corresponding RTL description is written in pseudo-code. The
prefix EW indicates enable write signal, whereas AW stands for
address of the write access. For a non-faulty behavior, the two
register-write operations cannot be activated at the same cycle
given, the addresses are equal. Understandably, such errors are
difficult to track from static analysis. An automatically generated
assertion eases the verification by checking all such combinations
across the complete processor.

4.4 Simulation-based Verification
This is the second and the last phase of our complete verifica-

tion platform. In this phase, we separately run the automatically
generated instruction-set simulator (cycle-accurate) and the RTL
simulator for the same test-case. The processor states are com-
pared for each cycle between two simulations. We consider the
cycle-accurate instruction-set simulator as the golden reference.
Hence, a mismatch of the states indicates a design implementation
error. The complete simulation-based verification is guided by a
shell script.

5. Case Study
In order to implement and test the strength of our methodol-

ogy, we required a considerably complex ASIP. LEON3 [19] is a
7-stage pipelined processor, compliant with the SPARC V8 archi-
tecture. Due to its SPARC compatibility (which is a well-studied
architecture) and availability of its full source code under the GNU
GPL license, LEON3 finds high relevance in research and aca-
demic pursuits. For our case study, we implemented the integer
pipeline of LEON3 processor with integrated multiplication and
division unit using LISA. In the following sub-sections, we dis-
cuss the results of our verification approach.

5.1 Assertion-based Verification
In our case study, we have detected design errors of two

kinds. Firstly, there are resident errors, which were unknowingly
introduced during the design-phase by the designer. Secondly,
there are injected errors, which were intentionally introduced
during the verification-phase.

Design Resident Errors
Same write-port of the simulated memory was being accessed,

simultaneously, by multiple units. It got detected, as the assertion
responsible for checking exclusiveness among the write-enable
signals, got triggered.

The designer wanted to assign the following in the write-
back stage, Reg[reg num] = a; Reg[reg num | 1] =
b; Unfortunately, in a corner case, reg num was odd, and hence
the same register got accessed twice in the same cycle. It got
trapped by the same class of assertion as mentioned in the pre-
vious example. This kind of faults can only be found by dynamic
execution of instructions.

The execution of the div instruction was initially carried out
in the EX stage of the pipeline, alongwith other arithmetic, logic
instructions, where all of those were activating write regarith op-
eration of WB stage. The designer wanted to decrease the critical

path of the processor, which was running along the div operation.
The execution of div instruction was distributed over two pipeline
stages - EX and ME. Due to unmindful copying, still then, both the
parts were erroneously activating the write regarith operation, and
got itself trapped into the single branch execution fault model.

Trapping of Injected Bugs
A temporary register was inserted inside the LEON3 model

which was written by two instructions, from different pipeline
stages, simultaneously. It was caught by the fault model for regis-
ter transfer operations.

Two new instructions were inserted, which can be represented
by the following table 3. Here x[29] stands for 29 consecutive
don’t care bits in the instruction-word. It is easy to appreciate
that, testA and testB have partial similar coding contribution
which made the decoder activate two execution branches simulta-
neously. This design violation was covered by our fault model for
single branch execution.

test insn : testA ‖ testB
testA : 110 x[29]
testB : 1 testC x[28]
testC : 100

Table 3. Instructions with Coding-Overlap

5.2 Simulation-based Verification
In the second phase, we tried to catch some of the behavioral

bugs hidden in the design. In order to trap them, we ran the HDL
simulation as well as the instruction-set simulation with the same
test-cases, and compared their results in a bitwise fashion, to re-
veal any mismatch in the processor states as obtained from both
the simulations. The test-case used for this purpose is automati-
cally generated from the TGE, which attains a high ADL behavior
coverage. To our satisfaction, the major design resident errors got
trapped in first phase of verification itself. This proves the strength
of our assertion-based verification methodology.

5.3 Coverage Analysis
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Figure 7. ADL vs RTL Coverage

Here, we present a comparative study of the effect of incorpo-
rating design-knowledge with our proposed verification support,
on coverage results. With increasing architecture knowledge, we
found steeper rise in the ADL coverage, compared to that of RTL
coverage (refer figure 7). The ADL coverage represents the line
coverage in the ADL behavior description and the RTL cover-
age represents the line coverage in the RTL description. The in-
creasing design expertise is simply an abstract notation, where the
higher value indicates greater usage of the architecture knowledge
in test-generation.
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The comparative result that we obtained regarding the ADL
coverage vs RTL coverage, has demonstrated some interesting fea-
tures in it. We utilized the power of TGE for the generation of
required test-benches, moving from pure random to constricted
test-cases gradually. As we used more and more directed test-
scenarios the initial coverage-gap of about 41.9% converged at a
point when both the coverages were approximately 90%. With the
aim to achieve more coverage, we restricted test-cases further, to
reach the final position where ADL coverage is 98.88%, leaving
RTL coverage at 92%. This high coverage is obtained by using
only 532 instructions. 100% ADL coverage was not achievable
since, we restrained from testing the LEON3 FPU unit, which is
under development in LISA. It is interesting to note that the ADL
coverage is initially much lower than the RTL coverage, whereas
with high design knowledge the ADL coverage is higher than the
RTL coverage. The reasoning behind this observation is the fol-
lowing. In an ADL, the hardware details are implicitly mentioned.
For elaboration, an operation, has got the resource-usage declara-
tion, coding, and the behavior, in the ADL level. The correspond-
ing RTL forms are registers, decoders and data-path respectively.
Hence, a given behavior gets expanded in RTL code. So, RTL
coverage is initially bulkier, compared to ADL behavior coverage.
With the increase in number of instructions, ADL coverage rises,
while RTL coverage curve assumes a nearly flat, slow-rising gradi-
ent, as the major bulk is already covered. The two coverage curves
converge at a point (in our case, when both attain 90% coverage).
Beyond that point, ADL coverage curve steeply rises, as more and
more corner cases get revealed. These cases have more share in the
ADL-code than their RTL counterpart have in the complete RTL
description. Therefore the percentage of code which is covered in
ADL, is more than the percentage of code, covered in RTL.

6. Conclusion and Future Work
With the growth in demand of complex, optimized, fault-

critical systems, ADLs integrated with verification support will
become inevitable for the designers. Traditional verification ap-
proaches, performed using test automation tools or assertions be-
gin at RTL level and therefore key design points might be missed
due to the complexity of the system. In this paper, we presented a
verification methodology, in order to assist the ADL users with a
completely self-sufficient, consistent design-and-test environment.
The novelty of this approach lies in having stronger control over
the complete verification flow, without doing away with the com-
fort of high abstraction level. Moreover, experiments showed that
the integration of TGE and assertion-based verification approach
would not burden the tool-chain and micro-architecture generation
process, because of its manageable light kernel.

Our future work will include the semantic analysis of each in-
struction behavior for the automated generation of the behavioral
assertions and guiding of test pattern generation.
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