
Connectivity Preserving Voxel Transformation

Anvesh Komuravelli1, Arnab Sinha2, and Arijit Bishnu1

1 Computer Science and Engineering Department, Indian Institute of Technology,
Kharagpur, Kharagpur-721302, India

{anvesh,bishnu}@cse.iitkgp.ernet.in
2 Dept. of Electrical Engineering, Princeton University, Princeton,

New Jersey, USA-08544
sinha@princeton.edu

Abstract. A three dimensional digital binary image is B26 connected
if its set of black voxels is 26-connected, i.e. for all black voxels there
exists at least one black voxel among its 26 neighbors. We show that any
two such images I and J of c1 and c2 number of connected components
respectively and n voxels each, can be transformed into one another
maintaining the B26 connectivity of the black voxels by O((c1 + c2)n

2)
interchanges.

1 Introduction

A three (two) dimensional digital binary image (I) is a function I : Z
3 → {0, 1}

(I : Z
2 → {0, 1}). Any element in Z

3 (Z2) is called a voxel (pixel). We consider
finitely many lattice points (voxels/pixels) from Z

3 (Z2) in I. A voxel (pixel) p
is black (white) if I(p) = 1 (I(p) = 0). We call two pixels (x1, y1) and (x2, y2)
to be 8-neighbors if and only if (x1 − x2)2 + (y1 − y2)2 ≤ 2. For 4-neighbors,
it is (x1 − x2)2 + (y1 − y2)2 ≤ 1. We call two voxels (x1, y1, z1) and (x2, y2, z2)
to be 26-neighbors if and only if (x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 ≤ 3. This
induces a graph G26 whose vertex set is Z

3 and there exist edges between two
lattice points satisfying the above inequality. In a 3-D binary image I, B26 is a
sub-graph of G26 induced by the black voxels in I. Similar graphs can be defined
for 2-D binary images also. A pair of neighboring (4 or 8) [4] opposite-valued
pixels in a 2-D binary image I is called interchangeable if reversing their values
preserves the topology of the image [5,6]. The interchange does not affect the
number of 0s and 1s in I. We will define interchangeable voxel pair later on.
Two 2-D binary images I and J are called IP-equivalent [5,6] if there exists
a sequence of binary images I = I0, I1, . . . , Ii, . . . , Ik = J such that any Ii

(1 ≤ i ≤ k) can be obtained from Ii−1 by reversing an interchangeable pixel pair.
Rosenfeld and Nakamura [6] proved the conjecture made in [5] that if two binary
images I and J have two simply connected sets S and T respectively of the same
number of 1s, then I and J are IP-equivalent. In a recent comprehensive work
that also deals with the combinatorial bounds on the number of interchanges,
Bose et al. [1] generalized the results in [6]. They showed that for any (a, b) ∈
{(4, 8), (8, 4), (8, 8)}, any two Ba,Wb-connected images I and J each with n

V.E. Brimkov, R.P. Barneva, H.A. Hauptman (Eds.): IWCIA 2008, LNCS 4958, pp. 1–12, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 A. Komuravelli, A. Sinha, and A. Bishnu

black pixels differ by a sequence of O(n2) interchanges. The corresponding result
for two B4,W4 connected images is O(n4). A binary image I is called Ba,Wb

(a, b ∈ {4, 8}) connected if its foreground (1) is a-connected and its background
(0) is b-connected. The interchanges considered by Bose et al. [1] are also of
interchangeable pixel pairs such that the connectivity of both foreground and
background are maintained as in [5,6]. This sort of transformation problems
has motivation in robotics [2] where researchers are interested in the number of
moves needed in going from a configuration to another under some restrictions
in the movement patterns. Under a more restricted and complex interchange
rule, Dumitrescu and Pach [3] show that any two B4 connected images are apart
by O(n2) interchanges where an interchange takes place between two 8-neighbor
pixels such that the image obtained after the interchange is still B4 connected.
Though Dumitrescu and Pach talk of modular metamorphic systems in terms of
motion planning in [3], a connection to pixels is straightforward.

In this work, we consider connectivity preserving voxel transformation of 3-D
binary images under a very relaxed and simple model of connectivity. To the best
of our knowledge, connectivity preserving voxel transformation has not been con-
sidered earlier. Section 2 discusses preliminaries needed for our work. Section 3
discusses the main body of our work. In Section 4, we discuss connectivity pre-
serving voxel transformation under the model proposed in [2] for 2-D.

2 Preliminaries

2.1 Definition and Notations

Our model is simple as we do not consider the connectivity of the white voxels.
The earlier works in 2-D [5,6,1] consider connectivity of both black and white
pixels. We think considering this simple model is worthwhile for an initial study
on connectivity preserving voxel transformation.

We call a pair of neighboring (26) opposite-valued voxels in I interchangeable if
reversing their values preserves the B26 connectivity of the 3-D image. The inter-
change obviously does not affect the number of 0s and 1s in I. Two B26 connected
3-D binary images I and J of the same number of voxels are called transformable
if there exists a sequence of 3-D binary images I = I0, I1, . . . , Ii, . . . , Ik = J such
that any Ii (1 ≤ i ≤ k) can be obtained from Ii−1 by reversing an interchange-
able voxel pair. We show in this work that any two 3-D binary images I and J
which are B26 connected and have the same number of voxels are transformable.
We do this by transforming I to a linear chain of voxels. So, it follows that J
can also be transformed to a linear chain of voxels; and the transformation of
I to J can be obtained by transforming I to a linear chain of voxels and then
retracing the transformation (of J) from the linear chain of voxels back to J .

Following are the definitions of the terms we will be using throughout. See
Fig. 1. When a voxel moves because of the interchanges such that its z-coordinate
remains unaffected, we use the term pixel also. In the body of the text, we inter-
changeably use the term voxel and pixel.

Connectivity Preserving Voxel Transformation 3

Layer: A 3-D object spans over some layers, where each layer contains a 2D
structure.

Connectivity-sensitive pixel: Consider the topmost layer (let it be Layer 1) of
Fig. 1(a). As the object is connected, there must exist at least one pixel
Player1 which has a 26-neighbor in the layer just below it. We denote such
pixels as connectivity-sensitive pixels. For the preservation of connectivity,
one of these connectivity-sensitive pixels are not interchanged during the first
part of the transformation, as the layers present below are hanging from that
particular pixel of the top-layer.

Merge Axis: Merge axis (M(P)) is a coordinate axis passing through pixel P
and the pixels lying on it are defined to be non-interchangeable through-
out the first part of the transformation. A merge-axis contains at least one
connectivity-sensitive pixel. Figure 1(a) shows M(Player1), M(Player2) and
M(Player3) in Layer 1, Layer 2 and Layer 3 respectively. All the pixels of the
given 2D component are finally brought onto or merged on this axis using
connectivity preserving interchanges. Where P is obvious, we use just M.

Level: In a given layer and in a given connected component in that layer, a level
is the shortest distance of a pixel of that component, from the Merge Axis.

Cut and Non-cut pixels: A pixel whose removal disconnects the originally con-
nected component is a cut-pixel, otherwise it is non-cut.

Coordinate Axes: For any black pixel on a 2D layer, its four coordinate axes
determine the direction in which the adjacent black pixels are located. The
coordinate axes through pixel P in Fig. 1(b) are the following (i) A(P)v

(vertical axis), (ii) A(P)h (horizontal axis), (iii) A(P)45 (making 45◦ with
A(P)h) and (iv) A(P)−45 (making -45◦ with A(P)h).

Player3

Player1

Merge axis

Merge axis

P’layer2 Player2

Merge axis

Layer 1

Layer 2

Layer 3

(a)

P

A(P)v

A(P)-45

A(P)45

A(P)h

(b)

Fig. 1. (a) The 3D object in different layers. The adjacency between Player1 and Player2

(P ′
layer2 and Player3) maintains the connectivity across Layer 1 and Layer 2 (Layer 2

and Layer 3). (b) The coordinate axes through a given P .

4 A. Komuravelli, A. Sinha, and A. Bishnu

Merge Path: Extending the concept of Merge Axis, a Merge Path is a path (not
necessarily a straight line) on which we finally merge all the pixels.

We use G = (V, E) to denote a graph, where V denotes the set of vertices and
E, the set of edges between the vertices. Complexity Analysis, wherever used,
denotes the number of interchanges between black and white voxels required for
the particular algorithm.

2.2 Solution Strategy

In this problem, our fundamental strategy is to attack the 2D layers of a B8-
connected finite binary image found in a B26-connected 3D object. In a given 2D
layer, a pixel can have at most 8 neighbors. Hence, we borrow from Bose et al.
[1] the idea of transforming any 2D binary image into a vertical image, ensuring
that the object preserves connectivity during the transformation. However, we
cannot directly adopt the strategy in [1] since the vertical image produced in
the 2D plane is unique and in our case might snap the connectivity between two
layers. A general case of the problem may have the images I and J such that,
each layer has more than one connected component of black pixels.

Define a graph G = (V, E), such that (i) each connected component in any
layer corresponds to a node in V , and (ii) for any two connected components, C1

and C2, if there is at least one pair of voxels (u, v) which are B26 adjacent, with
u ∈ C1 and v ∈ C2, then we have an edge. It is easy to see that, as the black
pixels in the original image I are connected, G is connected. Let G′ = (V, E′)
be any spanning tree of G. We know from the definition of a spanning tree that,
as long as G remains connected G′ also remains connected, thus satisfying the
principal constraint behind the transformation. So, it is sufficient to consider
G′, instead of G. Also, we know that every spanning tree has at least one node
whose degree is equal to one.

3 The Strategy for Voxel Transformation

Before we discuss the actual algorithm we discuss below a construction which is
frequently used in the algorithm.

3.1 Construction of 2D Linear Chains

Given a node in G′ with degree one, we need to consider only one connectivity-
sensitive pixel in the component represented by the node to preserve the connec-
tivity. So, a Merge Axis can be any coordinate axis passing through that pixel.
Now, the rest of the black pixels (which do not originally lie on the merge axis)
are interchanged preserving the connectivity such that they finally appear as a
linearly connected chain along the merge-axis.

The strategy can be outlined as follows. We compress the 2D region, step
by step, from the boundary, simultaneously expanding on the merge axis, M.

Connectivity Preserving Voxel Transformation 5

M

P

(a)

M

P
Q

(b)

M

Q

P

(c)

M
R S T

Q

P

(d)

Fig. 2. (a) This shows a connected component in a layer. P is a non-cut pixel and
M , the Merge Axis. (b) This shows P in its new position after the interchange with
its adjacent white pixel. (c) P is interchanged with white pixels twice more. (d) P is
finally placed on M . This leaves all other pixels on the boundary to be cut pixels. Q
is one such pixel. The oval region shows the disconnectivity on the Merge Axis before
collapsing the cut pixels.

Ultimately, we have the linear connected chain on M of all the pixels originally
in the 2D plane. Now, we describe our algorithm.

Take a non-cut pixel (if any) on the boundary, other than those on M. Clearly,
its removal doesn’t disconnect the rest of the black region. Hence, we move it
along the boundary until we first reach M, interchanging with the white pixels
that come in the way. This clearly maintains connectivity of the black pixels.
Place it on M, by interchanging with the white pixel already present.

We repeat the above process till all the non-cut pixels are exhausted. Now,
we are left with only cut pixels on the boundary (if any).

Figure 2(a) shows the part of the original image, which is of concern (one
layer). The movement of the non-cut pixel P along the boundary to the merge
axis M is shown in Fig. 2(b) to Fig. 2(d).

Lemma 1. Consider the situation when all the black pixels on the boundary,
not on M, are cut pixels. Also consider a part of the boundary which starts and
ends on M and let ma and mb be a pair of black pixels on M through which the
cut pixels on this part of the boundary are connected to M. Now, ma and mb

are connected only through this part of the boundary. Moreover, this is true for
every such part of the boundary.

Proof. Let us suppose that we have another path connecting ma and mb. This
clearly implies that there is a non-cut pixel on the part of the boundary con-
tradicting the hypothesis. The same argument follows for all such parts of the
boundary. ��

6 A. Komuravelli, A. Sinha, and A. Bishnu

P

(a)

P

(b)

MP

QR

(c)

Fig. 3. (a) One possible location of P , the leftmost pixel on the topmost level. (b) The
other possible location of P . (c) The cut pixel Q is collapsed onto the previous level,
exposing a non-cut pixel R.

For an illustration, Fig. 2(d) shows a discontinuity on M with all the black
pixels on the boundary and not on M being cut pixels. The pixels S and T are
connected only through this boundary.

So, our goal is to fill the gaps between the two ends on M. Consider the
leftmost pixel in the topmost level, say P . As this is the topmost level, this pixel
has no B8 neighbors in the level above or to the left of it. Now, considering the
remaining possibilities the only two situations where there are no non-cut pixels
on the boundary are illustrated in Fig. 3. As it is clear from the figure, filling up
of the gaps on M can be clearly done by collapsing P to the level below it.

Figure 3(c) shows the collapsing of Q for example. Q is interchanged with
the pixel right below it. This is formed from Fig. 2(d). It is easy to see that
collapsing preserves connectivity.

We continue collapsing. If this results in a new non-cut pixel, we go for the
next iteration.

Complexity Analysis: Assume that the total number of pixels in the 2D region
is n. Any pixel can be a cut or a non-cut pixel at any point of time during the
transformation. If it is a non-cut pixel, and if it is chosen to be moved along
the boundary to M, it takes O(n) interchanges to reach M, as the boundary
contains at most n pixels. If it is a cut pixel, all pixels other than those on M
are cut pixels and this particular pixel has been chosen to be collapsed to a level
below it, then it takes one interchange to do so. There can be at most n such
interchanges for any particular pixel. Hence, for any pixel, it takes at most O(n)
interchanges and therefore, the complexity is O(n2).

3.2 Algorithm-Part I

Let u be a node with degree one in G′ and also let (u, v) be the edge emerging
from u. In other words, the components represented by u and v, say U and V
respectively, have at least one B26 adjacent voxel pair (vu, vv), with vu ∈ U and
vv ∈ V . As the degree of u in G′ is one, we develop a strategy to merge U with V .

To make the merging easier, we first form a single straight chain of all the
pixels on U . The merge axis M for U can be in any direction. So, let us fix it to
be horizontal. We merge all the black pixels in U on M.

Let us suppose that U and V are in a layers i and i + 1 (i − 1), respectively.
Again, to make merging easier we take M to such a location on layer i that the

Connectivity Preserving Voxel Transformation 7

top view of these two components U and V looks like, M protruding out from
the boundary of V . So, we translate M horizontally, in the layer in which U is
present, say i, till any further move removes the connectivity between U and V ,
using the procedure described below.

Translation: The idea behind translation is simple. We move pixel by pixel.
Figure 4 shows an example of how we do it. The extreme pixel is moved first
followed by the next farthest pixel. A given pixel gets displaced O(n) times.
There are O(n) pixels to be moved. Hence, the complexity for translation is
O(n2).

Fig. 4. Here P1 and P2 needed to be displaced. In this illustration, the transformation
of P1 is shown. P1 is moved along the chain (for preserving the connectivity) and
brought back to the chain whenever the first white pixel is found. The displacement of
P2 can be similarly done.

If U intersects with any other connected component in the layer i either
during the process of merging on M or during the process of translation, we do
the following.

1. We stop the process.
2. We consider the compound component formed by U and the component with

which it intersects instead of the original components.
3. We build a new G and form the new spanning tree, G′.
4. We go for the next iteration.

Note that, U might have established new links with other components in layers
i − 1 and i + 1. Figure 5 shows an illustration of this part.

Complexity (Part I): Let nu and nv be the number of black pixels in U and
V respectively. From our earlier discussions, merging all nu pixels on M
takes O(n2

u) interchanges. As translating M horizontally by one pixel takes
O(nu) interchanges, the entire translation phase takes O(nunv) interchanges.
If any process has to be stopped in the middle, then a new iteration has to
be started after making some changes, mentioned above.

8 A. Komuravelli, A. Sinha, and A. Bishnu

U

V

(a)

U

V

(b)

U

V

(c)

Fig. 5. (a) The pixels in U have been merged on to its Merge Axis. This shows all
the adjacencies. (b) Two of the pixels have been translated by the procedure described
above. (c) The situation after the entire translation.

3.3 Algorithm-Part II

Now, we merge the chain in U with the layer containing V . The pixels can be
merged in any order but we restrict to one particular order, namely, from the
end of the Merge Axis on U which is B26 adjacent to a pixel on V to the other
end. There are two possibilities.

Case I: U has developed new B26 adjacencies with some voxels of other com-
ponents in the layer containing V .

Case II: No such adjacency has been developed.

It is very well possible that some other edge between U and any other component
W in G got snapped. Case II is the easiest of the two. All we need to do is, keep
interchanging the voxels on M in U , with the white voxels in the layer containing
V starting from either end of M. Figure 6 shows an example. It is easy to see that
the complexity in this case is O(nu). Now, let us consider Case I. Then, there is a
possibility that, if we follow the same steps as suggested above for Case II, after
certain number of steps, we encounter another connected component. Figure 7
shows an example. If we encounter such a component, we adopt a sequence of
steps, similar to those considered in Part I.

U

V

(a)

V

(b)

Fig. 6. (a) Starting from the situation in Fig. 5(c) a pixel has been merged with V .
(b) All pixels on U have been merged onto V .

Connectivity Preserving Voxel Transformation 9

U

V W

Fig. 7. U develops new adjacencies with W , during translation

1. We stop the process. This may be the end of the process.
2. We consider the compound component formed by V and the other component

in the same layer which we encountered, along with the pixels interchanged
between U and this layer by now, instead of V and that other component.

3. We update U. U now contains fewer pixels on the chain M.
4. We rebuild G and form the new spanning tree, G′.
5. We start a new iteration.

3.4 Proof of Correctness and Overall Complexity

Lemma 2. The algorithm suggested above, eventually leads us to the interme-
diate structure, a single chain containing all the black voxels in the original
image I.

Proof. In one pass through Part I of the algorithm, we either merge U with
another connected component in the same layer, i, or move the chain, M to a
new location, again in the same layer, i. So, decrease in |V | in Part I is less than
or equal to one. In one pass through Part II of the algorithm, we merge either
U with V or V with some other connected component in its layer or both. So,
decrease in |V | is either one or two.

Now, if any pass through Part I merges two connected components, we don’t
touch Part II until again we pass through Part I, as a new iteration is started.
If the pass through Part I doesn’t merge but, simply translates U to a new
location, we definitely pass through Part II and this guarantees that at least
two components will be merged. Hence, each iteration through the algorithm
reduces |V | by at least one and therefore, after at most |V |−1 iterations, we are
left with a single component. Now, we can form M for this single component in
any direction starting from anywhere and form the single chain. ��
Let us find the complexity of an iteration. Assume that component i has ni

number of black pixels and that there are c components in total. Note that,
components in a particular layer may be disconnected but they can be con-
nected using voxels of layers above and below. Let

∑c
i=1 ni = n. We divide the

complexity calculation into two parts as follows.

1. Merging of all the pixels in a single component.
2. Merging of different components.

10 A. Komuravelli, A. Sinha, and A. Bishnu

Merging a component of ni black pixels onto its Merge Axis takes O(n2
i) in-

terchanges. Now, during the process, if this intersects with another component
with nj number of black pixels, we simply start a new iteration. Let nk be the
total number of pixels of the component on which this Merge Axis has to be
merged. Translation of the Merge Axis takes O(nink) interchanges if it doesn’t
intersect with any other component. Else, we simply start a new iteration. Once
translation is done, merging takes O(ni) interchanges if it’s Case II. In Case I,
we have to start a new iteration somewhere in the middle.

So, the worst case complexity of an iteration is

O(n2
i) + O(nink) + O(ni) = O(n2

i + nink)

And the overall worst case complexity is simply a summation of the above
complexity over all the iterations. From Lemma 2 it is clear that the number of
iterations is at most c−1. Note that ni, nk may change after every iteration due
to merging of components. In any case, ni and nk are O(n). So, an upper bound
of the complexity is

Σc−1
i,k=1O(n2

i + nink) = Σc−1
1 O(n2) = O(cn2)

Theorem 1. Given any two binary images I and J with c1 and c2 number of
connected components respectively and n voxels each, both can be transformed
into one another maintaining the original connectivity of the black voxels by
O((c1 + c2)n2) interchanges.

Proof. The theorem follows from Lemma 2 and the above discussion. ��

4 Voxel Transformation under a Different Connectivity
Model

In the model presented till now, a valid interchange is taken as such an inter-
change between any two B26 adjacent black and white voxels, which preserves
the connectivity of the image before and after the interchange. A slightly dif-
ferent model can be obtained if we impose a single backbone condition [2] along
with our original connectivity model. Dumitrescu and Pach [3] also consider this
as an alternative model. In our case, a backbone is defined as the set of all black
voxels except the one which we currently interchange. The condition is that the
backbone must be B26 connected at any given point of time. In order to adopt
this model, we only need to make small changes in our algorithm.

First, note that, in the algorithm we described, there are only two situations
where the single backbone condition fails.

1. While collapsing the pixels on the boundary when all the non-cut pixels not
on Merge Axis are exhausted to form the 2D linearly connected chains.

2. While merging the translated Merge Axis with a component in an adjacent
layer.

Connectivity Preserving Voxel Transformation 11

First Situation: While forming the 2D linearly connected chains, instead of
collapsing the pixels to the level below when all the pixels on the boundary are
cut, we can move the black pixels between ma and mb on the Merge Axis (refer
Lemma 1) to one of the extreme ends of the axis (through interchanges). This
is similar to the Translation, mentioned in Part I in Section 3.2. So, ultimately
what we have is a Merge Path which is the union of two parts of the original
Merge Axis and the cut black pixels on the boundary. For example, consider
Fig. 2(d). The pixels R, S and T have to be translated to the ends of M .

This can be easily adopted to the algorithm discussed. We need to con-
sider only one connectivity-sensitive pixel for each 2D connected component.
So, we can easily decide which part of the Merge Axis is to be extended and
which part should be left untouched (depending on which part the connectivity-
sensitive pixel lies on). For example, suppose that in Fig. 2(d), the pixel R is
the connectivity-sensitive pixel. We should not move R during the translation
mentioned above. So, a possible and easy solution is to translate all the pixels
starting from the rightmost end of M till T to the left end of M . Then, translate
S. And we end up with the Merge Path.

Now, we are left with bending the Merge Path to a straight line. The only
curvy portion is that of the chain of black pixels. Again, in a similar manner,
considering the above example, translate each pixel on the chain, starting from
the right end to the left end of M .

Second Situation: We only need to change the order in which the pixels on
the Merge Axis are merged with the component in the other layer. Note that
the end of the Merge Axis other than the one whose removal disconnects the
components, is a non-cut pixel. So, we can merge starting from that end, just
the opposite way we mentioned in Section 3.3. Now, clearly, interchanging with
a non-cut pixel maintains the backbone’s connectivity. The only problem is with
Case I of the Section 3.3. The new adjacencies are at the very end where we have
non-cut pixels. One possible solution is starting from this end, find the first pixel
which is not B26 adjacent with any of the pixels in the new component which
the Case I refers to. So, starting from this pixel (which is clearly non-cut) keep
merging till the other end. The rest of the algorithm follows.

The changes mentioned in both the above mentioned situations do not change
the complexity.

5 Conclusion

To conclude, we have shown that two 3D binary images I and J of c1 and c2

components differ by a sequence of O((c1 + c2)n2) 26-local interchanges preserv-
ing the original black connectivity. We also discussed an alternative approach
to fit into a slightly different model in Section 4. One possible extension to the
algorithm would be to consider a more general model where we try to preserve
the connectivity of the white pixels (background) along with that of the black
voxels (foreground).

12 A. Komuravelli, A. Sinha, and A. Bishnu

References

1. Bose, P., Dujmovic, V., Hurtado, F., Morin, P.: Connectivity-Preserving Transfor-
mations of Binary Images. In: Computer Vision and Image Understanding, Elsevier,
Amsterdam (accepted, 2007)

2. Dumitrescu, A., Suzuki, I., Yamashita, M.: Motion planning for metamorphic sys-
tems: feasibility, decidability and distributed reconfiguration. IEEE Transactions on
Robotics and Automation 20(3), 409–418 (2004)

3. Dumitrescu, A., Pach, J.: Pushing squares around. Graphs and Combinatorics 22(1),
37–50 (2006)

4. Klette, R. and Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital
Picture Analysis. Morgan Kaufman, Elsevier, New Delhi, India, (2005)

5. Rosenfeld, A., Saha, P.K., Nakamura, A.: Interchangeable pairs of pixels in digital
images. Pattern Recognition 35(9), 1853–1865 (2001)

6. Rosenfeld, A., Nakamura, A.: Two simply connected sets that have the same area
are IP-equivalent. Pattern Recognition 34(2), 537–541 (2002)

	Connectivity Preserving Voxel Transformation
	Introduction
	Preliminaries
	Definition and Notations
	Solution Strategy

	The Strategy for Voxel Transformation
	Construction of 2D Linear Chains
	Algorithm-Part I
	Algorithm-Part II
	Proof of Correctness and Overall Complexity

	Voxel Transformation under a Different Connectivity Model
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

