Emanuel Swedenborg: A Neuroscientist Before His Time

CHARLES G. GROSS

Emanuel Swedenborg (1688–1772) was a famous Swedish religious thinker and mystic. He also wrote extensively on brain function. Many of his writings on the brain remained unpublished for 100 years or more; none had any effect on the development of neuroscience. Yet they contain many extraordinary insights that did not recur until late in the 19th century. He was particularly prescient about the functions of the cerebral cortex, the corpus callosum, and the pituitary gland. This article reviews Swedenborg's ideas on the brain in the context of 18th century knowledge and considers where they came from and why they were ignored. NEUROSCIENTIST 3:142–147, 1997

KEY WORDS Swedenborg, History of science, Cerebral cortex

In 1743, the Swedish nobleman, polymath, and mystic Emanuel Swedenborg began to see and converse with God and angels and continued to do so until he died 30 years later. Soon after his death, his followers founded the Swedenborgian Church of the New Jerusalem that continues today as an active Protestant sect. Before his visions began, Swedenborg's interest in the soul had led him to study its housing in the brain, and he wrote a set of extraordinary treatises on brain function. They contained a number of ideas that anticipated modern discoveries by more than 100 years. For example, he argued for a crucial role of the cerebral cortex in sensory, motor, and cognitive functions—during a period when the cortex was denied any significant functions at all. He even had something very akin to Neuron Doctrine, although actual neurons had not been described. Yet his writings on the brain had no impact on the development of neuroscience. This article begins by reviewing the knowledge of the brain in Swedenborg's time and goes on to consider his life, his insights into brain function, the sources of these ideas, and finally, his influence on the arts and sciences.

Neuroscience in the 17th and 18th Centuries

From the revival of anatomical investigation by Andreas Vesalius of Padua in the 16th century until the middle of the 19th century, the cerebral cortex was usually considered of little interest. This is reflected in its very name, "cortex," Latin for "rind." Vesalius himself thought the function of the cortical convolutions was to allow the blood vessels to bring nutrient to the deeper parts of the brain:

...nature impressed those sinuous foldings throughout the substance of the brain, so that the thin membrane, folded with numerous vessels, could insert itself into the substance of the brain and so very dexterously administer nourishment (1).

A similar view was taken by Thomas Bartholin (1660–1680), Professor of Anatomy in Copenhagen and discoverer of the lymphatic system. He suggested that the convolutions were:

to make the cerebral vessels safe by guiding them through these tortuositites and so protect them against danger of rupture from violent movements, especially during full moon when the brain swells in the skull (2).

Marcello Malpighi (1628–94), Professor in Bologna, the founder of microscopic anatomy, and discoverer of capillaries, was the first to microscopically examine the cortex. He saw it as made up of little glands or "globules" with attached fibers (Fig. 2):

I have discovered in the brain of higher sanguinous animals that the cortex is formed from a mass of very minute glands. These are found in the cerebral gyri which are like tiny intestines and in which the white roots of the nerves terminate or, if you prefer, from which they originate...[the globules] are of an oval figure...[their] inner portion puts forth a white nervous fibre...the white medullary substance of the brain being in fact produced by the connection and fasciculation of many of these (3).

Similar "globules" or "glandules" were also reported by Leeuwenhoek and other subsequent microscopists (4). Historians once thought these pioneers were actually observing cortical pyramidal cells (e.g., 5). However, at least in the case of Malpighi, artifacts are now considered a more likely possibility, since Malpighi reported that the globules were more prominent in boiled than fresh tis-

Department of Psychology, Princeton University, Princeton, New Jersey.

Address reprint requests to: Department of Psychology, Princeton University, Princeton, NJ 08544-1010 (email: cgross@princeton.edu).

Fig. 1. Emanuel Swedenborg at 45. From a copper engraving in Volume 1 of his Opera Philosophica et Mineralia (1734).
Haller, Professor at Tubingen and later Bern, who was also famous as a botanist, poet, novelist, and politician. Using animals, he tested the “sensibility” of various brain structures with mechanical stimuli, including picking with a scalpel, puncturing with a needle, and pinching with forceps, as well as with chemical stimuli, including silver nitrate, sulfuric acid, and alcohol. With these methods, he found the cortex completely insensitive. By contrast, he reported the white matter and subcortical structures such as the thalamus and medulla to be highly sensitive; their stimulation, he said, produced expressions of pain, attempts of the animal to escape or convulsions (10).

Haller’s ideas on the insensitivity of cortex and the sensitivity of other brain structures were repeatedly confirmed by the experiments of his students such as J. G. Zinn of “Zonule of Zinn” fame, Professor of Medicine at Gottingen. Describing one such study, Zinn wrote (10):

Having cut out a small circular piece of the cranium of a dog with a trephine... I pierced the exposed dura mater, touched it with a blade of a scalpel, and poured a solution of mercury sublimate on it; the animal, however, gave no signs of pain and suffered no convulsions. Since I thought the dog ought to have become apoplectic, I irritated the reflected skin and he showed that he felt pain by giving out a loud cry... Having incised the dura mater, I cut the cortex into pieces, pierced it, irritated it, but the animal showed no sign of pain.

By contrast, when he thrust a trocar through the skull, corpus callosum, and corpus striatum to the base of the brain (as confirmed at autopsy) the dog “howled pitifully... vomited repeatedly... and died the next day.” From observations such as these, Haller and his followers concluded that all parts of the cortex were equivalent and were involved in neither sensation nor movement.

In summary, during Swedenborg’s time, the cerebral cortex was considered an insensitive rind with no sensory, motor, or higher functions.

Swedenborg’s Life

Emanuel Swedenborg was born in Stockholm in 1688 of a wealthy mining family that provided him with a lifelong private income. His father was a Professor of Theology at Uppsala, a famous hymn writer, and later, a Bishop. Swedenborg studied philosophy at Uppsala but became increasingly involved in science and technology. Among his unrealized schemes were ones for airplanes, submarines, and machine guns. (Do all visionaries dream of flying through the sky, swimming beneath the sea and efficiently wiping out their enemies, or do Leonardo and Swedenborg have something special in common?) He served on the Board of Mines and made a number of substantial contributions to astronomy, geology, metallurgy, palaeontology and physics (11–15).

In the 1740s, inspired by studying Newton, he began seeking mathematical and mechanical explanations of the origin and nature of the physical and biological universes. For example, he developed a theory of the origin of planets similar to the later (and apparently independent) ones of Kant and Laplace. He then turned to the problem of the nature of the soul and its relation to the body. This led him to seek the site of the soul in the body and thus to the study of the brain itself:

I have pursued this [brain] anatomy solely for the purpose of discovering...
the soul. If I shall have furnished anything of use to the anatomic or medical world it will be gratifying, but still more so if I shall have thrown any light upon the discovery of the soul (16).

He read widely about the brain in the biological and medical literature of the day and traveled for extended periods to various countries of Western Europe.

He first published on the brain in 1740 in his *Deeconomia Regni Animalis*, which was later translated from Latin into English as *The Economy of the Animal Kingdom* (17). By “regni animalis” he meant kingdom of the anima or soul; he considered this kingdom or realm to be the human body and, particularly, the brain. By “oeconomia” he meant organization. Thus a better translation of his title might be “Organization of the body” or less literally, “The biological bases of the soul.”

He also dealt with the brain and sense organs in his second major biological work *Regnum Animale* (18) published a few years later. (Again, “animale” here means pertaining to the soul.)

In 1743, Swedenborg’s religious visions began, and for the rest of his life, he concentrated his energies on religion and spiritual matters. The resulting huge corpus of theological and psychic writings later formed the basis of a new protestant sect, the (Swedishman) Church of the New Jerusalem. He never returned to his former interest in the brain, and indeed, much of his writing on the brain remained unpublished in his lifetime. Various religious disputes led him to exile in London, where he died at the age of 83 (11, 12, 14, 15).

In the 19th century, some of Swedenborg’s manuscripts on the brain and sense organs were found by R.L. Tafel in the library of the Swedish Academy of Sciences (15), and they were published, sometimes first in Latin and then in English. The most important of these, “The Brain,” was published in 1882 and 1887 (19). Further translations of Swedenborg’s unpublished writings on the brain appeared in the 20th century, but most were earlier drafts of material already published (20–22).

Views on the Cerebral Cortex

At the very beginning of his biological works, Swedenborg announces that his writings will be based primarily on the work of others:

> Here and there I have taken the liberty to throw in the results of my experience, but only sparingly... I deemed it best to make use of the facts supplied by others... I laid aside my instruments, and restraining my desire for making observations, determined to rely rather on the researches of others than to trust my own (17).

In fact, he very rarely does “throw in” the results of his own work. There is only a single figure of one of his own brain dissections—that of a drake (17)—and almost no accounts of any of his own experiments or observations.

Swedenborg begins each part of his biological works with an extensive set of long quotations from previous writings on the subject. (These are a marvelous boon for those of us who can not read medical Latin.) Then in the section following, entitled “Analysis” or “Induction,” he proceeds to weave his own theory of biological structure and function. Such a section from *The Economy of the Animal Kingdom* (17) on “The cortical substance of the brain” characteristically begins “From the foregoing experience we infer that the cortex is the principal substance of the brain.” In fact, his “inference” was actually a radical and total departure from the contemporary literature he had just reviewed. Swedenborg then goes on to argue that the cerebral cortex is the most important substance in the brain for sensation, movement, and cognition:

> From the anatomy of the brain it follows that the brain is a sensorium
commune with respect to its cortical substance...since to it are referred the impressions of the external sense organs as if to their one and only internal centre...The cortical substance is also the motorium commune voluntarium for whatever actions are mediated by the nerves and muscles are determined beforehand by the will, that is, by the cortex (17).

This must be taken as a general principle, that the cortical substance imparts life, that is sensation, perception, understanding and will; and it imparts motion, that is the power of acting in agreement with will and with nature... (17)

Central to Swedenborg’s brain theory were the cortical globules or glands described by Malpighi and his successors. In an extraordinary anticipation of the Neuron Doctrine, Swedenborg argued that these globules, or, as he sometimes called them, “cerebellula” (“little brains”), were functionally independent units connected to each other by thread-like fibers. These fibers also ran through the white matter and medulla down to the spinal cord, and then by way of the peripheral nerves to various parts of the body. The operations of these cerebellula, he argued, were the basis of sensation, mentation, and movement.

From each cortical gland proceeds a single...nerve fiber; this is carried down into the body, in order that it may take hold of some part of a sensation, or produce some action... (21).

Sensory and Motor Functions of the Cortex

Whereas Descartes had projected sensory messages to the walls of the ventricle and Willis had brought them to the thalamus, Swedenborg thought they terminated in the cerebral cortex, “the seat wherein sensation finally ceases,” specifically in the cortical cerebella:

The external sensations do not travel to any point beyond the cortical cerebella. This is clear since these are the origin of the nerve fibers (17).

The organ of sight is the eye, while the organ of internal sight is the cortical gland (19).

Swedenborg even outlines the pathway from each sense organ to the cortex in a totally unprecedented view that was not to reappear until well into the 19th century:

...the visual rays flow, by means of the optic nerve, into the thalami nervorum opticorum, and are thence diffused in all directions over the cortex... Also the subtle touches of the olfactory membrane lining the labyrinthine cavities of the nares and the consequent subtle transformation or modifications do not terminate until they arrive...in the cortical circumstance. Again the modulations of air, striking upon the delicate...internal ear allow themselves to be carried to the medulla and thence toward the supreme cortex... Further, that the tremors excited by the touch of angular bodies in the papillary flesh of the tongue, spread themselves with the sense of taste in a similar manner by their nerves, toward...the cortical substance. And that every ruder touch whatever springs up from the surface of the whole, through the medium of the nervus into the medulla spinalis or medulla oblongata, and so into the highly active cineritious [grey] substance and the circumambient cortex of the brain (17).

He seems unclear about whether there are discrete cortical areas for every sense or whether all the senses go to the same cortical region, as shown in the following contradictory passages:

It is clear from examining the brain that the cortical substances are so wisely arranged as to correspond exactly to every external sensation...the general sensorium is designed to receive every species of external sensation—sight, hearing, taste and smell distinctly (17).

It is the cortical substance collectively that constitutes the internal organism, corresponding to the external organism of the five senses...no individual part of the cerebrum corresponds to any sensorial organ of the body; but the cortical substance in general corresponds... (17).

The cortex, for Swedenborg, has motor as well as sensory function, or in his typically picturesque language:

The cortical glandule is the last boundary where sensations terminate and the last prison house whence the actions break forth; for the fibres, both sensory and motory, begin and end in these glandules (19).

Remarkably, Swedenborg had the idea of the somatotopic organization of motor function in the cerebral cortex. He correctly localized control of the foot in the dorsal cortex (he calls it the “highest lobe”), the trunk in an intermediate site, and the face and head in the ventral cortex (his third lobe).

...the muscle and actions which are in the ultimate of the body or in the soles of the feet depend more immediately upon the highest parts; upon the middle lobe the muscles which belong to the abdomen and thorax, and upon the third lobe those which belong to the face and head; for they seem to correspond to one another in an inverse ratio (19).

There is no other suggestion of the somatotopic organization of motor cortex until the experiments of Fritsch and Hitzig in 1870.

Further Insights on the Nervous System

Swedenborg localized other functions in addition to sensation and movement in the cortex. For example, he claimed that the anterior cortex is more important for higher functions than the posterior:

If this [anterior] portion of the cerebral cortex...is wounded then the internal senses—imagination, memory, thought—suffer; the very will is blunted...This is not the case if the injury is in the back part of the cerebrum (19).

Whether valid or not, frontal lesions are still considered to “blunt the will.”

Beyond the cortex, there are a number of other unusual insights about nervous function in Swedenborg’s writing. He called the pituitary gland the “arch gland” (19) “which receives the whole spirit of the brain and communicates it to the blood.” It was the “complement and crown of the whole chemical laboratory of the brain” (19). The brain “stimulates the pituitary gland to pour out new life into the blood” (19). Similar views of the pituitary do not appear until this century.

Swedenborg’s view of the circulation of the cerebrospinal fluid was not surpassed until the work of Magendie 100
years later (23). He was the first to implicate the colliculi in vision (19). and indeed, the only one until Flourens in the 19th century. Swedenborg suggested that a function of the corpus callosum was for "the hemispheres to intercommunicate with each other." (19) He proposed that function of the corpus striatum was to take over motor control from the cortex when a movement became a familiar habit or "second Nature." (24).

Sources of Swedenborg's Ideas on the Brain

Where did Swedenborg's amazingly prescient views come from? Because of his detailed knowledge of contemporary brain anatomy and physiology, some historians have thought that he must have visited brain research laboratories and there performed dissections or participated in experiments (24–26). For example, he was in Paris when Pourfour du Petit was conducting experiments on the effects of lesions of the cortex on movement in dogs; thus, it has been proposed that he participated in du Petit's experiments and might have observed the somatotopic organization of motor cortex. Du Petit did realize that the cortex had motor functions, although his claims to this effect were ignored (10). However, there is no sign that Du Petit himself had any notion of the topographic arrangement of motor cortex. Furthermore, in Swedenborg's detailed travel diaries, there is no evidence that he visited du Petit's or any other laboratory studying the brain during his travels abroad (15). Visiting churches was more his wont.

The available evidence indicates that Swedenborg's ideas came primarily, if not entirely, from a careful reading and integration of the anatomical, physiological, and clinico-pathological literature that was available to him and that was so copiously quoted in his works (27, 28). He paid particularly close attention to detailed descriptions and observations, rather than simply to the authors' own interpretations and conclusions. Furthermore, he was unusual in attempting to integrate observations of the effects of human brain injury with the details of comparative neuroanatomy.

Influence and Lack Thereof

Swedenborg's writings on religion and spiritualism had an enormous impact on European and American writers and artists. Blake, Yeats, Balzac, the Browns, Baudelaire, and Strindberg, for example, all claimed to be particularly influenced by him (11, 12). In 19th-century America, his influence was strong among those interested in spiritualism and in transcendentalism (29). Ralph Waldo Emerson, who was involved in both, declared in 1854, "This age is Swedenborg's."

Despite his fame in literary, artistic, and religious circles (or perhaps partially because of it), Swedenborg's ideas on the brain remained largely unknown until the 20th century. The Latin originals of The Animal Kingdom books of the 1740s were not even mentioned in any of the major physiology textbooks of the following decades, such as those by Haller (1754), Unzer (1771), Prochaska (1784), Blumenbach (1815), Magendie (1826), Bell (1829), or Muller (1840). The English translations of Swedenborg that appeared in the 1840s do not seem to have fared any better. They were ignored in the standard physiology textbooks of the day, such as Carpenter's (1845) and Todd's (1845), as well as in Ferrier's monograph on the brain (1876). Even one of the translators of The Animal Kingdom, J.J.G. Wilkinson, a London surgeon, hardly mentioned the brain in either his biography of Swedenborg (14) or his commentary on The Animal Kingdom (30).

Early 19th-century reviews of Swedenborg's biological works were few and puzzled. An Athenaeum reviewer in 1844 noted that The Animal Kingdom "will startle the physiologist and [contains] many assumptions he will be far from conceding" (31). The most positive responses seem to have come from books on phrenology (32) or mesmerism (33).

However, by the time the first volume of Swedenborg's The Brain was published in 1882, the zeitgeist had radically changed. Fritsch and Hitzig (1870) had discovered motor cortex, and the race to establish the location of the visual and other sensory cortices was well under way (34). Now Swedenborg made sense, and both volumes got long rave reviews in Brain (35). The reviewer called it "one of the most remarkable books we have seen" and noted that:

"... it appears to have anticipated some of the most modern discoveries on the brain but that because of its metaphysical, ontological, theological phraseology... if it had not been that attention was arrested and enchanted by finding so many anticipations of scientific discoveries by as much as 120 or 130 years, we should have been tempted to throw aside the book as beyond our province, if not hopelessly unintelligible."

Nevertheless, Swedenborg's writings on the brain seem to have disappeared from sight again, not being mentioned in Foster's (1892) or Schafer's (1900) authoritative textbooks of physiology, in Ferrier's (1866) or Campbell's (1905) monographs on the brain, or in the history of the field by Foster (36) or even the massive two-volume one by Soury (37). In 1901, Swedenborg's extraordinary anticipations on the brain were finally publicized by the great historian of neuroscience, Max Neuberger, Professor of the History of Medicine in Vienna (38). As a result, Swedenborg's writings on the brain became the subject of further accounts by neuroanatomists and historians, particularly Swedish ones (6, 13, 25, 28, 39). In 1910, a conference of 400 delegates from 14 countries was held in London in honor of his multiple contributions to science, philosophy, and theology (13).

Why Was Swedenborg So Ignored?

There are several cases of biologists who were so ahead of their time that their writings were read but not understood by their contemporaries. The appreciation of their ideas had to wait until further advances had closed the gap between them and lesser mortals. Arguably, the most famous example was Gregor Mendel (40). Sometimes it is an otherwise well-known and successful scientist who has ideas that are only grasped in the following generations. Outstanding examples of this are Darwin's concept of the irregularly branching and nonhierarchical process of natural selection (40) and Claude Bernard's maxim on the necessity of a constant internal milieu for the development of a complex nervous system (41). Swedenborg's case is more extreme. There is little evidence that contemporary physiologists and anatomists even read his writings on the brain. He never held an academic post or had students, colleagues, or even scientific correspondents. He never performed any systematic empirical work on the brain, and his speculations were in the form of baroque and grandiose pronouncements embedded in lengthy books on the human soul by one whose fame was soon to be that of a mystic or madman. Indeed, even he

146 THE NEUROSCIENTIST Swedenborg: Prescient Neuroscientist
seems to have lost interest in his ideas on the brain because he never finished or published many of his manuscripts on the subject. Furthermore, some of his more advanced ideas, such as on the organization of motor cortex or the functions of the pituitary gland, did not appear in print until after they were no longer new. As a neuroscientist, Swedenborg failed to publish, and as a neuroscientist, he certainly perished.

Acknowledgments
I thank Greta Berman, Michael Graziano, and Helen Chung for their help and Linda Chamberlin of the Princeton University Library for gathering old books for the From Fat to Wide.

References
27. Ramstrom M. Emanuel Swedenborg’s investigations in natural science and the basis for his statements concerning the functions of the brain. Upsala: University of Upsala 1910.
36. Foster M. Lectures on the history of physiology during the 16th, 17th and 18th centuries. Cambridge: Cambridge 1901.