
New Features of the SAT’04 versions of zChaff

Zhaohui Fu Yogesh Mahajan Sharad Malik

Department of Electrical Engineering

Princeton University

{zfu,yogism,sharad}@EE.Princeton.EDU

1 Introduction

Zchaff is an implementation of the well known
Chaff algorithm [6]. It participated in the SAT
2002 Competition and won the Best Complete
Solver in both industrial and handmade bench-
mark categories. It is a popular solver and can
be compiled into a linkable library for easy inte-
gration with user applications. Successful inte-
gration examples include the BlackBox AI plan-
ner [1], NuSMV model checker [2], GrAnDe the-
orem prover [3], and others.

2 New Features

This year’s competition entries continue to use
many features from the original version like
the Variable State Independent Decaying Sum
(VSIDS) scores for decision making, the Two
Literal Watching scheme for boolean constraint
propagation and non-chronological backtracking
with firstUIP conflict analysis. These features
are well-known and are widely adopted by many
other DPLL based state-of-the-art SAT solvers.
The main features of the new versions are adop-
tion of a rapid restart policy, a more locality cen-
tric decision strategy, multiple conflict analysis,
and a more aggressive clause database manage-
ment.

2.1 Increased Search Locality

When it was proposed, VSIDS turned out to be
very successful in increasing the locality of the
search and this was observed to lead to faster
solving times. Though VSIDS scores are biased
towards recent regions of the search by the de-
caying of the scores, the decisions made are still
global decisions, which is consistent with the fact
that the variable score only stores the global in-
formation. However, recent experiments show

that branching on the variables within certain
locality helps dramatically to prune the search
space. SAT solvers BerkMin [4] and Siege [8]
have both exhibited great speedups from such
decision heuristics.
One way of trying to make VSIDS more lo-

cal is to increase the frequency of score decay.
The variable ordering scheme also differs from
the previous version by incrementing the scores
of the literals which get resolved out during con-
flict analysis. Both the submitted versions use
a variant of VSIDS where the variables are kept
only approximately sorted.
The use of the most recent unsatisfied con-

flict clause as is done by BerkMin turns out to
be a good cost-effective approach to estimate
the locality. An unassigned variable with the
highest VSIDS literal score in a recent unsatis-
fied conflict clause is chosen to be branched on.
After going through a certain threshold number
of conflict clauses, we switch back to the VSIDS
decision heuristic.

2.2 Learning Shorter Clauses

Shorter clauses lead to faster BCP and quicker
conflict detection. Also, shorter conflict clauses
potentially prune larger spaces from the search.
Conflict Driven Clause Learning learns new

(conflict) clauses by successively resolving the
clauses involved in the current conflict. The sum
of the lengths of all the involved clauses usu-
ally determines the length of the learned con-
flict clause, i.e. shorter conflict clauses are more
likely to be resolved from a set of short clauses
involving a small set of variables.
One simple step to achieve the above goal

is to update a variable’s antecedent clause with
a shorter one whenever possible. This happens
many times during BCP, where an already as-
signed variable gets reassigned with a different
antecedent. With almost no additional cost, the

1



SAT Competition 2004 - solver description

old antecedent id can be replaced with the cur-
rent one if the new antecedent is shorter.
Multiple conflict analysis is a more costly

technique. BCP often returns a whole set of
conflicting clauses (most of which are derived
from some common resolvents). For each con-
flicting clause, we find the length of the firstUIP
clause to be learned, and only add the one with
the shortest length. Variables that are assigned
at decision level zero are excluded from all the
learned conflict clauses.
Conflict clause based assignment stack

shrinking [7] is a technique that Jerusat uses
and seems to be quite useful in increasing the
locality of the search. It is seen that this of-
ten reduces the average length of learned con-
flict clauses. When the firstUIP clause exceeds
certain threshold length L, we sort the decision
levels of the literals of the clause, backtrack to
almost the highest decision level in the clause,
and then tell the decision strategy to start re-
assigning to false the unassigned literals of the
conflict clause till a conflict is encountered. We
believe this technique works by reducing the size
of the set of assigned variables from which future
conflict clauses will be derived. In our experi-
ments, no fixed L performed well over a variety
of benchmarks. Instead, we set L dynamically
using some measured statistics. Zchaff mea-
sures the averaged difference between lengths
of the clause being used for shrinking and the
immediate new clause we get after the shrink-
ing. Zchaff rand measures the mean and the
standard deviation of the lengths of the learned
conflict clauses.

2.3 Frequent Restarts

It was found that a fixed interval restart policy
was often useful [5] [4].

2.4 Aggressive Clause Deletion

Profiling with gprof shows that about 80% of
the total running time of zchaff is spent on BCP.
Thus long clauses are very harmful when they
are not frequently used. We adapt some ideas
in BerkMin’s clause deletion heuristic. Each
clause has its own activity count. This is in-
creased every time the clause is involved in a
conflict clause derivation and decreased periodi-
cally. We measure the clause’s activity to age ra-
tio. Any clause with this ratio less than certain

threshold is considered for deletion. The deci-
sion to delete the clause is made based on the
unrelevance of the clause which is estimated by
the number of unassigned literals in the clause.

3 Authors

Zchaff is written in C++. Zchaff was written
by Lintao Zhang in 2001 at Princeton Univer-
sity. The current versions have been developed
by Yogesh Mahajan and Zhaohui Fu. The offi-
cial release of zchaff is maintained by Zhaohui Fu
and the latest official release can be obtained at
http://www.ee.princeton.edu/~chaff. We
hope to make the latest development versions
available soon.

References

[1] http://www.cs.washington.edu/homes/
kautz/blackbox/.

[2] http://nusmv.irst.itc.it/.

[3] http://www.math.miami.edu/~tptp/
ATPSystems/GrAnDe/.

[4] E.Goldberg and Y.Novikov. Berkmin: a fast
and robust SAT-solver. In DATE, 2002.

[5] Henry Kautz, Eric Horvitz, Yongshao Ruan,
Carla Gomes, and Bart Selman. Dynamic
restart policies. In The Eighteenth National

Conference on Artificial Intelligence, 2002.

[6] M. Moskewicz, C. Madigan, Y. Zhao,
L. Zhang, and S. Malik. Chaff: Engineer-
ing an efficient SAT solver. In 39th Design

Automation Conference, Las Vegas, 2001.

[7] Alexander Nadel. The jerusat SAT
solver. Master’s thesis, Hebrew University
of Jerusalem, 2002.

[8] Lawrence Ryan. The siege satisfiability
solver. http://www.cs.sfu.ca/~loryan/

personal/.

2


