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Abstract Robustness of optimization models for network problems in communication

networks has been an under-explored topic. Most existing algorithms for solving robust

optimization problems are centralized, thus not suitable for networking problems that

demand distributed solutions. This paper represents a first step towards a systematic

theory for designing distributed and robust optimization models and algorithms. We

first discuss several models for describing parameter uncertainty sets that can lead

to decomposable problem structures and thus distributed solutions. These models in-

clude ellipsoid, polyhedron, and D-norm uncertainty sets. We then apply these models

in solving a robust rate control problem in wireline networks. Three-way tradeoffs

among performance, robustness, and distributiveness are illustrated both analytically

and through simulations. In Part II of this two-part paper, we will present applications

to wireless power control using the framework of distributed robust optimization.

1 Introduction

Despite the importance and success of using optimization theory to study commu-

nication and network problems, most work in this area makes the unrealistic assump-
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2

tion that the data defining the constraints and objective function of the optimization

problem can be obtained precisely. We call the corresponding problems “nominal”.

In many practical problems, these data are typically inaccurate, uncertain, or time-

varying. Solving the nominal optimization problems may lead to poor or even infeasible

solutions when deployed.

Over the last ten years, robust optimization has emerged as a framework of tackling

optimization problems under data uncertainty (e.g., [1,2,3,4,5]). The basic idea of ro-

bust optimization is to seek a solution which remains feasible and near-optimal under

the perturbation of parameters in the optimization problem. Each robust optimization

problem is defined by three-tuple: a nominal formulation, a definition of robustness,

and a representation of the uncertainty set. The process of making an optimization

formulation robust can be viewed as a mapping from one optimization problem to

another. A central question is as follows: when will important properties, such as con-

vexity and decomposability, be preserved under such mapping? In particular, what

kind of nominal formulation and uncertainty set representation will preserve convexity

and decomposability in the robust version of the optimization problem?

So far, almost all of the work on robust optimization focuses on determining what

representations of data uncertainty preserves convexity, thus tractability through a

centralized solution, in the robust counter part of the nominal problem for a given

definition of robustness. For example, for the worst-case robustness, it has been shown

that under the assumption of ellipsoid set of data uncertainty, a robust linear opti-

mization problem can be converted into a second-order cone problem; and a robust

second-order cone problem can be reformulated as a semi-definite optimization prob-

lem [6]. The reformulations can be solved efficiently using centralized algorithms such

as the interior-point method.

In this paper, motivated by needs in communication networking, we will focus

instead on the distributiveness-preserving formulation of the robust optimization. The

driving question thus becomes: how much more communication overhead is introduced

in making the problem robust?

To develop a systematic theory of Distributed Robust Optimization (DRO), we

first show how to represent an uncertainty set in a way that not only captures the

data uncertainty in the model but also leads to a distributively solvable optimization

problem. Second, in the case where a fully distributed algorithm is not obtainable, we

focus on the tradeoff between robustness and distributiveness. Distributed algorithms

are often developed based on decomposability structure of the problem, which may dis-

appear as the optimization formulation is made robust. While distributed computation

has long been studied [7], unlike convexity of a problem, distributiveness of an algo-

rithm does not have a widely-agreed definition. It is often quantified by the amount of

communication overhead required: how far and how frequent do the nodes have to pass

message around? Zero communication overhead is obviously the “most distributed”,

and we will see how the amount of overhead trades-off with the degree of robustness.

In Section 2, we develop the framework of DRO, with a focus on the characterization

of uncertainty sets that are useful for designing distributed algorithms. An example

on robust rate control is given in Section 3, where we discuss various tradeoffs among

robustness, distributiveness, and performance through both analysis and numerical

studies. Conclusions to this part are given in Section 4. In Part II of the paper, extensive

applications of DRO to wireless power control will be presented
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3

2 General Framework

2.1 Optimization Models

There are many uncertainties in the design of communication networks. These un-

certainties stem from various sources and can be broadly grouped into two categories.

The first type of uncertainties are related to the perturbation of a set of design pa-

rameters due to erroneous inputs such as errors in estimation or implementation. We

call them perturbation errors. For example, power control is often used to maintain

the quality of a wireless link, i.e., the signal-to-interference-plus-noise ratio (SINR).

However, many power control schemes are optimized for estimated parameters, e.g.,

wireless channel quality or interference from other users. In reality, precise information

on these parameters are rarely available. Consequently, the corresponding optimized

power control scheme could easily become infeasible or exhibit poor performance. A

good power control scheme should be capable of protecting the link quality against

the perturbation errors. We show such an example on robust wireless power control in

the second part of this paper. A common characteristic of such perturbation errors is

that they can often be modeled as a continuous uncertainty set surrounding the basic

point estimate of the parameter. The size of the uncertainty set could be used to char-

acterize the level of perturbations the designer needs to protect against. The second

type of uncertainties is termed as disruptive errors, as they are caused by the failure

of communication links within the network. This type of errors can be modeled as a

discrete uncertainty set. In Section III of this paper, we present an example related to

disruptive errors on robust multipath rate control for service reliability.

To make our discussions concrete, we will focus on a class of optimization problems

with the following nominal form: maximization of a concave objective function over a

given data set characterized by linear constraints,

maximize f0 (x) (1)

subject to Ax � b

variables x,

where A is an M ×N matrix, x is an N × 1 vector, and b is an M × 1 vector. We use

� to denote component-wise inequality. This class of problems can model a wide range

of engineering systems (e.g., [8,9,10,11,12]). Generalization to nonlinear and convex

constraint sets presents a direction for major future work.

The uncertainty of Problem (1) may exist in the objective function f0, matrix pa-

rameter A, and vector parameter b. In many cases, the uncertainty in objective function

f0 can be converted into uncertainty of the parameters defining the constraints [13].

Later in Section 3 we show that it is also possible to convert the uncertainty in b into

uncertainty in A in certain cases (although this could be difficult in general). In the

rest of the paper, we will focus on studying the uncertainty in A. In many networking

problems, structures and physical meaning of matrix A readily leads to distributed

algorithms, e.g., in rate control where A is a given routing matrix, distributed subgra-

dient algorithm is well-known to solve the problem, with an interesting correspondence

with the practical protocol of TCP. Making the optimization robust may turn the linear

constraints into nonlinear ones and increase the amount of message passing. Quantify-

ing the tradeoff between robustness and distributedness is a main subject to study in

this paper.
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4

In the robust counterpart of Problem (1), we require the constraints Ax � b to

be valid for any A ∈ A, where A denotes the uncertainty set of A, and the definition

of robustness is in the worst-case sense [14]. Notice that we assume the uncertainty

set A is either an accurate description or a conservative estimation of the uncertainty

in practice. In other words, it is not possible to have parameters outside set A. In

this case, the definition of robustness is the worst case robustness, i.e., the solution

of the robust optimization problem is always feasible. However, this approach might

be too conservative. A more meaningful choice of robustness is the chance-constrained

robustness, i.e., the probability of infeasibility (or outage) is upper bounded. We can

flexibly adjust the chance-constrained robustness of the robust solution by solving the

worst-case robust optimization problem over a properly selected subset of the exact

uncertainty set. We will discuss such an example in details in Section 3.4.

If we allow an arbitrary uncertainty set A, then the robust optimization problem

is difficult to solve even in a centralized manner [15]. In this paper, we will focus on

the study of constraint-wise (i.e. row-wise) uncertainty set, where the uncertainties

between different rows in matrix A are decoupled. This restricted class of uncertainty

set characterizes the data uncertainty in many practical problems, and it also allows

us to convert the robust optimization problem into a formulation that is distributively

solvable. Tackling more general forms of uncertainties is another direction of extension

in the future.

Denote the jth row of A be aT
j , which lies in a compact uncertainty set Aj . Then

the robust optimization problem that we focus on in this paper can be written in the

following form:

maximize f0 (x) , (2)

subject to a
T
j x ≤ bj , ∀aj ∈ Aj , ∀1 ≤ j ≤ M,

variables x.

We show that the robust optimization problem (2) can be equivalently written

in a form represented by protection functions instead of uncertainty sets. Denote the

nominal counterpart of problem (2) with a coefficient matrix Ā (i.e., the values when

there is no uncertainty), with the jth row’s coefficient āj ∈ Aj . Then

Proposition 1 Problem (2) is equivalent to the following convex optimization prob-

lem:

maximize f0 (x) , (3)

subject to ā
T
j x + gj(x) ≤ bj , ∀1 ≤ j ≤ M,

variables x,

where

gj(x) = max
aj∈Aj

(aj − āj)
T

x, (4)

is the protection function for the jth constraint, which depends on the uncertainty set

Aj and the nominal row āj . Furthermore, gj(x) is a convex function since for any

0 ≤ t ≤ 1, we have that

max
aj∈Aj

(aj − āj)
T [tx1 + (1 − t)x2] ≤ t max

aj∈Aj

(aj − āj)
T

x1 + (1 − t) max
aj∈Aj

(aj − āj)
T

x2. (5)
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5

Different forms of Aj will lead to different protection function gj(x), which results

in different robustness and performance tradeoff of the formulation. Next we consider

several approaches in terms of modeling Aj and the corresponding protection function

gj(x).

2.2 Robust Formulation Defined By Polyhedron Uncertain Set

In this case, the uncertainty set Aj is a polyhedron characterized by a set of linear

inequalities, i.e., Aj , {aj : Djaj � cj}. The protection function is

gj(x) = max
aj :Djaj�cj

(aj − āj)
T

x, (6)

which involves a linear program (LP). We next show that the uncertainty set can be

translated into a set of linear constraints. In the jth constraint in (2), with x = x̂

fixed, we can characterize the set ∀aj ∈ Aj by comparing bj with the outcome of the

following LP:

v∗j = max
aj :Djaj�cj

a
T
j x̂. (7)

If v∗j ≤ bj , then x̂ is feasible for (2). However, this approach is not very useful since it

requires solving one LP in (7) for each possible x̂. Alternatively, we take the Lagrange

dual problem of the LP in (7),

v∗j = min
pj :D

T
j pj�x̂,pj�0

c
T
j pj . (8)

If we can find a feasible solution p̂j for (8), and cT
j p̂j ≤ bj , then we must have

v∗j ≤ cT
j p̂j ≤ bj . We can thus replace constraints in (2) by the following constraints:

c
T
j pj ≤ bj , D

T
j pj � x, pj � 0, ∀1 ≤ j ≤ M, (9)

and we now have an equivalent and deterministic formulation for Problem (2), where

all the constraints are linear.

2.3 Robust Formulation Defined by D-norm Uncertainty Set

D-norm approach [13] is another method to model the uncertainty set, and has

advantages such as guarantee of feasibility independent of uncertainty distributions

and flexibility in trading off between robustness and performance.

Consider the jth constraint aT
j x ≤ bj in (2). Denote the set of all uncertain co-

efficients in aj as Ej . The size of Ej is |Ej |, which might be smaller than the total

number of coefficients N (i.e., aij for some i might not have uncertainty). For each

aij ∈ Ej , assume the actual value falls into the range of [āij − âij , āij + âij ], in which

âij is a given error bound. Also choose a nonnegative integer Γj ≤ |Ej |. The definition

of robustness associated with the D-norm formulation is to maintain feasibility if at

most Γj out of all possible |Ej | parameters are perturbed. Let’s denote Si as the set of
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6

Γj uncertain coefficients. The above robustness definition can be characterized by the

following protection function,

gj(x) = max
Sj :Sj⊆Ej ,|Sj |=Γj

∑

i∈Sj

âij |xi|. (10)

If Γj = 0, then gj(Γj , x) = 0 and the jth constraint is reduced to the nominal con-

straint. If Γj = |Ej |, then gj(x) =
∑

i∈Ej
âij |xi| and the jth constraint becomes Soys-

ter’s worst-case formulation [13]. The tradeoff between robustness and performance

can be obtained by adjusting Γj .

Note that the nonlinearity of gj(Γj , x) is difficult to deal with in the constraint.

We can formulate it into the following linear integer programming problem,

max
{sij∈{0,1}}∀i∈Ej

∑

i∈Ej

âij |xi|sij , s.t.
∑

i∈Ej

sij ≤ Γj . (11)

Thanks to its special structure, (11) has the same optimal objective function value as

the following linear programming problem,

max
{0≤sij≤1}∀i∈Ej

∑

i∈Ej

âij |xi|sij , s.t.
∑

i∈Ej

sij ≤ Γj . (12)

Taking the dual of Problem (12), we have

min
{pij≥0}∀i∈Ej

,qj≥0
qjΓj +

∑

i∈Ej

pij , s.t. qj + pij ≥ âij |xi|, ∀i ∈ Ej . (13)

Similar to Section 2.2, we can substitute (13) into the robust Problem (2) to obtain an

equivalent formulation:

maximize f0(x) (14)

subject to
∑

i

āijxi + qjΓj +
∑

i∈Ej

pij ≤ bj , ∀j,

qj + pij ≥ âijyi, ∀i ∈ Ej , ∀j,

− yi ≤ xi ≤ yi, ∀i,

variables x, y � 0, p � 0, q � 0.

2.4 Robust Formulation Defined by Ellipsoid Uncertainty Set

Ellipsoid is commonly used to approximate complicated uncertainty sets for sta-

tistical reasons [15] and for its ability to succinctly describe a set of discrete points

in Euclidean geometry [14]. Here we consider the case where coefficient aj falls in an

ellipsoid centered at the nominal āj . Specifically,

Aj = {āj + ∆aj :
∑

i

|∆aij |
2 ≤ ǫ2j}. (15)

By (4), the protection function is given by

gj(x) = max

{

∑

i

∆aijxi :
∑

i

|∆aij |
2 ≤ ǫ2j

}

, (16)
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Denote by ‖x‖2 =
√

∑n
i=1 x2

i as the ℓ2-norm (or the Euclidean norm) of x. By Cauchy-

Schwartz inequality,

∑

i

∆aijxi ≤

√

∑

i

|∆aij |2‖x‖2 ≤ ǫj‖x‖2,

and the equality is attained by choosing

∆aij =
xiǫj

‖x‖2

.

Therefore we conclude that

gj(x) = ǫj‖x‖2. (17)

Although the resulting constraint in Problem (2) is not readily decomposable using

standard decomposition techniques, we will show in Part II of this paper that this leads

to tractable formulations in some important applications (e.g., wireless power control)

where users can obtain network information through local measurements without global

message passing.

2.5 Distributed Algorithm for Robust Optimization under Linear Constraints

We now consider possible distributed algorithms to solve the general robust opti-

mization problem with linear constraints in (2). Notice, however, the design of a truly

distributed algorithm needs to take into account the setup of the practical system. Our

motivation here is not to design a general distributed algorithm which is guaranteed

to work equally well for all applications. Instead, we try to show how to solve (2) by

exploring its special structures in DRO, and the resulting algorithm may lead to dis-

tributed algorithm for each of the individual applications, such as those in Section III

below and Part II of the paper.

Primal-dual Cutting-plane Method: The cutting-plane method has been used for

solving the general nonlinear programming problems and mixed linear integer program-

ming problems [16]. We assume the protection function here is convex and bounded

as in the previous subsections. Also, we assume the feasible region of the robust opti-

mization, X, is a convex and bounded set. At the kth iteration of this method, we use

the following function to approximate gj(x),

ḡj(x) = max
ℓ

ã
T
jℓx + b̃jℓ, 1 ≤ ℓ ≤ k, (18)

such that ∀x ∈ X, we have

ḡj(x) ≤ gj(x). (19)

The key is to appropriately choose ãjℓ and b̃jℓ for all ℓ, i.e., generating the proper

cutting planes.

Substituting the protection function gj(x) with ḡj(x), we obtain the following

approximating problem.

maximize f0 (x) , (20)

subject to ā
T
j x + â

T
jℓx + b̃jℓ ≤ bj , ∀1 ≤ j ≤ M, 1 ≤ ℓ ≤ k,

variables x.
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The feasible set of (20) is still a polytope, and therefore we assume it can be distribu-

tively solved. Based on the obtained solution, we can generate a new cutting plane. The

new cutting plane, together with previously obtained constraints, can help to attain

a better approximation of the protection function. Notice, however, how to efficiently

find a new cutting plane depends on which type of protection function we use. Details

about how to find cutting planes for different convex set can be found in [14]. More

importantly, for a collection of problems, we can attain a primal feasible solution as

well as a dual upper bound to (2) via solving an approximating problem, as shown in

the following theorem.

Theorem 1 Assume that āji ≥ 0, x � 0, and gj(x) is a non-decreasing function in

xi. Let x̄∗ , [x̄∗
1, x̄∗

2, ..., x̄∗
N ]T denote the optimal solution to the approximating problem

in (20). For the jth constraint, compute

δj = min[1, arg max
δ
∑

i ājix̄
∗
i +gj(δx̄∗)≤bj ,δ≥0

(δ)]. (21)

In particular, for the ellipsoid, D-norm, and polyhedron uncertainty set,

δj = min

[

1,
bj

āT
j x̄∗ + gj(x̄∗)

]

. (22)

It is noticeable that δj is an auxiliary variable associated with the jth constraint in

(3). Likewise, for the ith variable, we can define an auxiliary variable δ̄i such that

δ̄i , minâji>0 δj . Then {x̃∗ , [x̃∗
1, x̃∗

2, ..., x̃∗
N ]T : x̃∗

i = x̄∗
i δ̄i} is a feasible solution to

(3). Furthermore, the optimal objective function value of (3) f0(x
∗) is lower bounded

by f0(x̃
∗) and upper bounded by f0(x̄

∗), i.e.,

f0(x̃
∗) ≤ f0(x

∗) ≤ f0(x̄
∗). (23)

Proof Equation (22) follows directly from the fact that the protection function under

ellipsoid, D-norm or polyhedron uncertainty set scales linearly with δj , i.e., gj(δjx) =

δjgj(x). In addition, assume x is a feasible solution to (3), it follows from (19) that x

is also a feasible solution to (20), as

ā
T
j x + ḡj(x) ≤ ā

T
j x + gj(x) ≤ bj , ∀j. (24)

Hence, the feasible region of (3) is a subset of the feasible region of (20), which implies

that f0(x
∗) ≤ f0(x̄

∗). Furthermore, for the jth constraint of (3), we have

ā
T
j x̃

∗ + gj(x̃
∗)

=
∑

i

δ̄iājix̄
∗
i + gj(x̃

∗) (25)

≤
∑

i

δj ājix̄
∗
i + gj(δj x̄

∗) (26)

≤ bj . (27)

(25) holds as x̃∗
i = x̄∗

i δ̄i. (26) follows because ∀āji > 0, δj ≥ δ̄i, and gj(x̃
∗) is a non-

decreasing function in x̃∗
i . (27) is obtained from the definition of δj . Based on (25) to

(27) we conclude that x̃∗ is a feasible solution to (3) and therefore f0(x
∗) ≥ f0(x̃

∗).
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Comment 1 To preserve the special structure of resulting problem we use a group

of linear functions to approximate the protection function. However, it is clear from

the proof that Theorem 1 is applicable as long as the condition in (19) is met. In other

words, for any feasible approximating function ḡj(bj , x) satisfying (19) (not necessarily

linear), Theorem 1 implies that we can always compute an upper and lower bound to

the optimal objective function of (3) by solving (20).

Note that the key idea of the cutting-plane method is to choose a group of linear

constraints to approximate the original problem in (3). We show next that for any given

convex set, we can always find a group of linear constraints such that (19) is satisfied.

Such a group of linear constraints is related to the well known supporting hyperplanes.

A hyperplane [17] is said to support a set S in Euclidean space R
n if it meets the

following two conditions: 1) S is entirely contained in one of the two closed half-spaces

determined by the hyperplane 2) S has at least one point on the hyperplane.

Supporting hyperplane theorem [17] is well known: If S is a closed convex set

in Euclidean space R
n, and x is a point on the boundary of S, then there exists a

supporting hyperplane containing x.

Since gj(x) is a convex function, the set Xj , {x � 0 : aT
j x + gj(x) ≤ bj}

is a closed convex set. As a consequence, we obtain the following proposition on the

existence of linear constraints satisfying (19).

Proposition 1 Recall that Xj = {x � 0 : aT
j x + gj(x) ≤ bj}. For any y � 0 and

y /∈ Xj . There exists at least one effective cutting plane ejℓ(x) , ãT
jℓx

∗ + b̃jℓ such

that 1) (19) is satisfied, i.e., ejℓ(x) ≤ gj(x), ∀x ∈ Xj ; 2) the effective cutting plane

contains at least one point in Xj ; 3) ejℓ(x) separates Xj from y, i.e., Xj and y lie at

different sides of ejℓ(x) and ejℓ(x) does not contain y.

Proof Since y /∈ Xj , and Xj is a closed convex set, we can project y onto the boundary

of Xj in Euclidean space R
n. Assume the projection is ȳ. The supporting hyperplane

theorem implies that we can find at least one supporting hyperplane containing ȳ.

In addition, Xj and y lie at different sides of this supporting hyperplane. Combing

the fact that y does not belong to this hyperplane, we conclude that this supporting

hyperplane is an effective cutting plane.

Based on the above theorem, we have the primal-dual cutting-plane method in the

sequel, which stops when the gap between the upper-bound and lower-bound of the

objection function is small enough.

Algorithm 1 (Primal-dual cutting-plane method)

1. Set time k=0 and set the threshold ǫ ≪ 1. For each j, let Hj be the set containing

the jth constraint of the nominal problem.

2. k = k + 1.

3. Obtain an approximating problem (20) based on all the constraints in {Hj , 1 ≤

j ≤ M}.

4. Solve the approximating problem. Calculate the sub-optimality gap η(k) = 1 −
f0(x̃

∗(k))
f0(x̄∗(k))

. If η(k) ≤ ǫ or k exceeds a given threshold, stop. Otherwise, for each

j, if x̄(k) violates the jth constraint , then find an effective cutting plane, add it

into the set Hj , and go to step 2.
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Theorem 2 The primal-dual cutting plane method monotonically converges to the op-

timal objective function value of (3). In addition, the sub-optimality gap converges to

0 when k goes to infinity, i.e., limk∈→∞ η(k) = 0.

Proof Let Hj(k) and X(k) denote respectively the value of Hj and the feasible region

of approximating problem (20) at the kth iteration of the above algorithm, we have

X(k + 1) ⊆ X(k) as Hj(k) ⊆ Hj(k + 1). Since f0(x̄
∗(k)) = maxx∈X(k) f0(x), we have

f0(x̄
∗(k)) ≥ f0(x̄

∗(k + 1)), ∀k > 1. (28)

Hence the sequence f0(x̄
∗(k)) is monotonically non-increasing. In addition, since Xj(k) ⊇

Xj , ∀k, we have X̄j , limk→∞ Xj(k) ⊇ Xj . Assume the cutting-plane algorithm does

not converge to the optimal solution to (3), in view of the fact that X =
⋂M

j=1 Xj ,

there must exist one y � 0 in R
n and a j ∈ {1, ..., n} such that y /∈ Xj but y ∈ X̄j . On

the other hand, it follows from Proposition 1 that any y /∈ Xj can be removed from the

set of feasible solution of (20) by adding an effective cutting plane, which contradicts

the assumption and therefore conclude the proof.

Also, as x̄∗(k) converges to x∗, it follows from (21) that δj converges to 1, which im-

plies that both f0(x̃
∗(k)) and f0(x̄

∗(k)) converge to f0(x
∗), and therefore limk∈→∞ η(k) =

0.

Comment 2 The generation of the effective cutting plan is carried out on a row by row

basis, and can be performed in either a parallel (synchronous) or serial (asynchronous)

manner. As such, it provides a lot of flexibilities that leads to a distributed realization.

We later give an example on applying the primal-dual cutting-plane method to the

distributed rate control for service reliability in Section 3.

Note that Proposition 1 not only proves the existence of an effective cutting plane

but also gives an efficient way to calculate it. In practice, however, the operation of

projection in Proposition 1 might pose difficulties for a distributed implementation,

since it is a quadratic optimization problem. On the other hand, in many cases there

exist more than one effective cutting planes for x̄∗(k) [cf. Step 4 of Algorithm 1], we

can then use an effective cutting plane different from the one proposed in Proposition

1 to simplify the computation. For instance, we will show how to simply generate an

effective cutting plan for a D-norm protection function in Section 3 of this paper. Also,

for the ellipsoid uncertainty set, [18] has proposed an efficient approach to find a good

polytope approximation for a given ellipsoid. A drawback of the cutting-plane approach

is that it may result in a large number of linear constraints and bring about a lot of

extra message passings. In practice we can employ efficient numerical algorithms such

as the active-set method to reduce the number of message passing.

Nonlinear Gauss-Seidel and Jacobi Method: The Gauss-Seidel (GS) and Jaobi

methods were originally proposed as efficient means to solve linear systems, and have

been extended to tackle unconstrained as well as constrained optimization problems

[7]. GS methods and Jacobi methods have a variety of applications including CDMA

multiuser detection [19] and decoding of low-density parity-check code [20]. The general

principle of both methods is to decompose a multidimensional optimization problem

into multiple one-dimensional optimization problems, and solve these one-dimensional

optimization problems in a successive or parallel manner.
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Let xi(k) denote the tentative value of the ith variable obtained at the kth iteration

of the GS algorithm. Also let Xi(x−i) be the feasible region of the ith variable when

the values are other variables are set as x−i = (x1, ..., xi−1, xi+1, ..., xN ), i.e.,

Xi(x−i) ,

{

xi : ā
T
j x + gj(x) ≤ bj , ∀1 ≤ j ≤ M

}

, (29)

where x = (xi, x−i). Then we can calculate xi(k + 1) via the following GS iteration,

xi(k + 1) (30)

= arg max
xi∈Xi(x1(k+1),...,xi−1(k+1),xi+1(k),...,xN (k))

f0 (x1(k + 1), ..., xi−1(k + 1), xi, xk+1(k), ..., xN (k)) .

Similarily, in the Jacobi iteration, xi(k + 1) is found by

xi(k + 1) (31)

= arg max
xi∈Xi(x1(k),...,xi−1(k),xi+1(k),...,xN (k))

f0 (x1(k), ..., xi−1(k), xi, xi+1(k), ...xN (k)) .

The difference between the GS method and the Jacobi method lies in the order

of solving the one-dimensional problems. The GS method solves the one-dimensional

problems sequentially, while the Jacobi method solve in parallel. They can also be

combined together to form hybrid algorithms. We later show a distributed robust power

control application, which is closely related to the nonlinear GS and Jacobi methods.

3 Robust Multipath Rate Control for Service Reliability

3.1 Nominal and Robust Formulations

Consider a wireline network where some links might fail because of human mistakes,

software bugs, hardware defects, or natural hazard. Network operators typically reserve

some bandwidth for some backup paths. When the primary paths fail, some or all of

the traffic will be re-routed to the corresponding disjoint backup paths. Fast system

recovery schemes are essential to ensure service availability in the presence of link

failure. There are three key components for fast system recovery [21]: identifying a

backup path disjoint from the primary path, computing network resource (such as

bandwidth) in reservation prior to link failure, and detecting the link failure in real-

time and re-route the traffic. The first component has been investigated extensively in

graph theory. The third component has been extensively studied in system research

community. Here we consider the robust rate control and bandwidth reservation in the

face of possible failure of primary path, which is related to the second component.

We first consider the nominal problem with no link failures. Following similar no-

tation as in Kelly’s seminal work [11], we consider a network with S users, L links and

T paths, indexed by s, l and t, respectively. Each user is a unique flow from one source

node to one destination node. There could be multiple users between the same source-

destination node pair. The network is characterized by the L×T path-availability 0−1

matrix

[D]lt =

{

dlt = 1, if link l is on path t,

0, otherwise.
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and T × S primary-path-choice nonnegative matrix

[W ]ts =

{

wts, if user s uses path t as the primary path,

0, otherwise.

where wts > 0 indicates the percentage that user s allocates its rate to primary path

t, and
∑

t wts = 1. Let x, c, and y denote source rates, link capacities, and aggregated

path rates, respectively. The nominal multi-path rate control problem is

maximize
∑

s

fs(xs) (32)

subject to Dy � c, W x � y,

variables x � 0, y � 0,

where fs(xs) is user s’ utility function, which is increasing and strictly concave in xs.

To represent Problem (32) in a more compact way, we denote R = DW as the

link-source matrix

[R]ls =

{

rls =
∑

t∈T (l) wts, if user s uses link l in one of its primary paths,

0, otherwise.

where T (l) denotes the set of all paths associated with link l, i.e., T (l) = {t : dlt = 1}.

The nominal problem can be compactly rewritten as

maximize
∑

s

fs(xs) (33)

subject to Rx � c,

variables x � 0 .

To ensure robust data transmission against the link failures, each user also deter-

mines a backup path when it joins the network. The nonnegative backup path choice

matrix is

[B]ts =

{

bts, if user s uses path t as the backup path,

0, otherwise.

where bts > 0 indicates the maximum percentage that user s allocates its rate to path

t. The actual rate allocation will be a random variable between 0 and bts, depend-

ing on whether the primary paths fail. We further assume that a path can only be

used as either a primary path or a backup path for the same user but not both. The

corresponding robust multi-path routing rate allocation problem is given by

maximize
∑

s

fs(xs) (34)

subject to
∑

s∈S(l)

rlsxs +
∑

t∈T (l)

gt(bt, x) ≤ cl, ∀l.

variables x � 0 .

Here S(l) denotes the set of users using the link l in one of their primary paths, and
∑

s∈S(l) rlsxs is the aggregate rate from users. Moverover, gt(bt, x) is the protection

function for the traffic from users who use path t as their backup path, and bt is the

tth row of matrix B.
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There are many ways of characterizing the protection function. Here we take D-

norm as an example. Let Et = {s : bts > 0, ∀s} denote the set of users who utilize path

t as the backup path, and Ft,Γt
denote a set such that

Ft,Γt
⊆ Et and |Ft,Γt

| = Γt.

Here Γt denotes the number of users who might experience path failures, and its value

controls the tradeoff between robustness and performance. The protection function can

then be written as

gt(bt, x) = max
Ft,Γt

⊆Et

∑

s∈Ft,Γt

btsxs, ∀t. (35)

Notice that Γt is a parameter (instead of a variable) in the protection function (35).

A centralized algorithm such as the interior point method can be used to solve the

service reliability problem (34). In practice, however, a distributed solution is preferred

in many situations. For example, for a large-scale communication network, multiple

nodes and associated links might be removed or updated, and it could be difficult to

collect the updated topology information of the whole network. As such, a centralized

algorithm may not be applicable. Furthermore, a distributed algorithm can be used to

dynamically adjust the rates according to changes in the network topology. Such sce-

narios motivate us to seek a distributed solution of the multipath rate control problem.

Since we consider service reliability in this application, most likely such a update is

only required infrequently.

3.2 Distributed Primal-dual Algorithms

We now develop a fast distributed algorithm to to solve the robust optimization

of multipath rate control based on a combination of active-set method [22] and dual-

based decomposition method. The proposed algorithm can be carried out in a fully

distributed manner.

We first show that the nonlinear constraints in Problem (34) can be replaced by a

set of linear constraints:

Proposition 2 For any path t, the single constraint

∑

s∈S(l)

rlsxs +
∑

t∈T (l)

gt(bt, x) ≤ cl, (36)

is equivalent to the following set of constraints

∑

s∈S(l)

rlsxs +
∑

t∈T (l)

∑

s∈Ft,Γt

btsxs ≤ cl, ∀
(

Ft,Γt
, ∀t ∈ T (l)

)

such that Ft,Γt
⊆ Et.(37)

Proof Let S(l) denote the set of users using link l on their primary paths. From (35),

we know
∑

s∈Ft,Γt
btsxs ≤ gt(bt, x) for all Ft,Γt

⊆ Et. If x∗ satisfies constraint (36),

we have

∑

s∈S(l)

rlsx
∗
s +

∑

t∈T (l)

∑

s∈Ft,Γt

btsx
∗
s ≤

∑

s∈S(l)

rlsx
∗
s +

∑

t∈T (l)

gt(bt, x
∗) ≤ cl, (38)
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i.e., it also satisfies the set of constraints in (37). On the other hand, if (37) is true,

then

∑

s∈S(l)

rlsxs +
∑

t∈T (l)

gt(bt, x)

=
∑

s∈S(l)

rlsxs +
∑

t∈T (l)

max
Ft,Γt

⊆Et

∑

s∈Ft,Γt

btsxs (39)

≤ max
(Ft,Γt

, ∀t∈T (l)):Ft,Γt
⊆Et





∑

s∈S(l)

rlsx
∗
s +

∑

t∈T (l)

∑

s∈Ft,Γt

btsxs



 ≤ cl. (40)

Therefore these two constraints are equivalent.

We further define some short-hand notations. For each choice of paramters (|T (l)|

sets of users)

F l =
(

Ft,Γt
⊆ Et, ∀t ∈ T (l)

)

,

we define a set corresponding to the choices of paths and users:

QF l
,
{

(t, s) : t ∈ T (l), s ∈ Ft,Γt

}

.

We further define Gl = {QF l
, ∀F l}. The constraints in (37) can be rewritten as follows,

∑

s∈S(l)

rlsxs +
∑

(t,s)∈QFl

btsxs ≤ cl, ∀QF l
∈ Gl. (41)

Note the number of constraints in (41) is
∏

t∈T (l)

(|Et|
Γt

)

, and increases quickly with

Γt and |Et|. This motives us to design an alternative method to solve (34). We next

present a sequential optimization approach. The basic idea is to iteratively generate a

set Ḡl ⊆ Gl, and use the following set of constraints to approximate (41):

∑

s∈S(l)

rlsxs +
∑

(t,s)∈QFl

btsxs ≤ cl, ∀QF l
∈ Ḡl. (42)

This leads to a relaxation of Problem (34):

maximize
∑

s

fs(xs) (43)

subject to
∑

s∈S(l)

rlsxs +
∑

(t,s)∈QFl

btsxs ≤ cl, ∀QF l
∈ Ḡl, ∀l,

variables x � 0 .

Let x̄ denote an optimal solution to the relaxed problem (43) and x∗ denote an

optimal solution of the original problem (34). If Ḡl = Gl, then we have
∑

s fs(x̄s) =
∑

s fs(x
∗
s). Even if Ḡl ⊂ Gl, it is still possible that the two optimal objective values are

the same as shown in the following theorem:

Theorem 3
∑

s fs(x̄s) =
∑

s fs(x
∗
s) if the following condition holds

max
QFl

∈Ḡl

∑

(t,s)∈QFl

btsx̄s = max
QFl

∈Gl

∑

(t,s)∈QFl

btsx̄s, ∀l. (44)
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Proof Since Ḡl ⊆ Gl and x̄ is the optimal source rate allocation of the relaxed problem

in (43), we have
∑

s fs(x̄s) ≥
∑

s fs(x
∗
s). However, the condition in (44) implies that

∑

s

rlsx̄s + max
QFl

∈Ḡl

∑

(t,s)∈Fl

btsx̄s

=
∑

s

rlsx̄s + max
QFl

∈Gl

∑

(t,s)∈Fl

btsx̄s ≤ cl, ∀l, (45)

hence x̄ is a feasible solution of (34), and
∑

s fs(x̄s) ≤
∑

s fs(x
∗
s). Thus we have

∑

s fs(x̄s) =
∑

s fs(x
∗
s).

Next we develop a distributed algorithm (Algorithm 2) to solve Problem (43) for

a fixed Ḡl for each l, which is suboptimal for solving Problem (34). We then design

an optimal distributed algorithm (Algorithm 3) that achieves the optimal solution of

Problem (34) by iteratively using Algorithm 2.

By relaxing the constraints in Problem (43) using dual variables λ = {{λli}
|̄G

l
|

i=1}
L
l=1,

we obtain the following Lagrangian,

Z̄(λ, x) =
∑

s

fs(xs) +
∑

l

|Ḡl|
∑

i=1

λli



cl −
∑

s∈S(l)

rlsxs −
∑

(t,s)∈QFl
(i)

btsxs



 .

For easy indexing, here we denote each set Ḡl =
{

QF l
(i), i = 1, . . . , |Ḡl|

}

.

The dual function is

Z(λ) = max
x�0

Z̄(λ, x). (46)

The optimization over x in (46) can be decomposed into one problem for each user s:

max
xs≥0



fs(xs) −
∑

l

|Ḡl|
∑

i=1



λlirls + λli

∑

(t,s)∈QFl
(i)

bts



 xs



 . (47)

Notice that link l can be viewed as the composition of |Ḡl| sub-links and each sub-link

is associated with a price (dual variable) λli. Each user s determines its transmission

rate xs by considering prices from both its primary path and backup path.

The master dual problem is

min
λ�0

Z(λ), (48)

which can be solved by the subgradient method. For each dual variable λli, its subgra-

dient can be calculated as

ζli(λli) = cl −
∑

s∈S(l)

rlsxs −
∑

(t,s)∈QFl
(i)

btsxs. (49)

The value of λli will be updated using the subgradient information correspondingly.

The complete algorithm is given as in Algorithm 2.

Algorithm 2 (Distributed primal-dual subgradient algorithm)

1. Set time k = 0, λ(0) = 0, µ(0) = 0, and thresholds ǫ ≪ 1.
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2. Let k = k + 1.

3. Each user s determines xs(k) by solving Problem (47).

4. Each user s passes the value of xs(k) to each link associated with this user.

5. Each link l calculates the subgradients ζl(λl(k)) = {ζli(λli(k)), ∀t, i} as in (49).

and ∆̄s(l, k) = cl

c̄l
, where c̄l = maxFl∈Ḡl

(

∑

s∈S(l) rlsxs(k) +
∑

(t,s)∈Fl
btsxs(k)

)

.

6. Each link l updates the dual variables λl(k + 1) = max{λl(k) + θ(k)ζl(λl(k)), 0}.

7. Each user s who uses link l on either its primary or backup paths calculates the asso-

ciated dual prices by passing messages over path t from its destination to its source.

User s also calculates ∆̄s(k) = minl

[

(

∆̄s(l, k)
)

rls>0
,
(

∆̄s(l, k)
)

bts>0, (t,s)∈QFl
(i)

]

and x̄s(k) = xs(k)∆̄s(k)by collecting messages from its associated links. If ηi(k) =

1−
∑

s fs(x̄s(k))
Z(λk)

≤ ǫi (where Z(λk) is given in (46)), stop. Otherwise go to step 2.

Here θ(k) is the step-size at time k. If it meets conditions such as those given in

[16, pp. 505], then this subgradient method is guaranteed to converge to the optimal

solution. Common choices of stepsize include the constant step size (θ(k) = β), dimin-

ish stepsize (θ(k) = β√
k
), and square summable (θ(k) = β

k ). The parameter ǫi is a

pre-defined small threshold. In addition, due to the special structure of (43), we can

characterize the sub-optimality gap of the obtained solution at each iteration, as shown

below.

Theorem 4 Let P ∗({Ḡl}) be the optimal object function value of the relaxed problem

(43), λk be the dual variables at the kth iteration of the subgradient algorithm 2, and

[x̄1(k), ..., x̄S(k)] be a feasible solution to (43). Then P ∗({Ḡl}) is lower bounded by
∑

s fs(x̄s(k)) and upper bounded by Z(λk), i.e.,

∑

s

fs(x̄s(k)) ≤ P ∗({Ḡl}) ≤ Z(λk). (50)

Furthermore, the sub-optimality gap ηi(k) satisfies limk→∞ ηi(k) = 0 for all i.

Proof For the lth link, we have

max
QFl

∈Ḡl





∑

s∈S(l)

rlsx̄s(k) +
∑

(t,s)∈QFl

btsx̄s(k)





= max
QFl

∈Ḡl





∑

s∈S(l)

rlsxs(k)∆̄s(k)xs(k) +
∑

(t,s)∈QFl

btsxs(k)∆̄s(k)



 (51)

≤ max
QFl

∈Ḡl





∑

s∈S(l)

rlsxs(k)∆s(l, k)xs(k) +
∑

(t,s)∈QFl

btsxs(k)∆s(l, k)



 (52)

= ∆s(l, k) max
QFl

∈Ḡl





∑

s∈S(l)

rlsxs(k)xs(k) +
∑

(t,s)∈QFl

btsxs(k)



 (53)

=
cl

c̄l
× c̄l = cl. (54)

(51) follows from the definition of x̄s(k). (52) holds as ∆̄s(k) ≤ ∆̄s(l, k), ∀rls >

0, ∀bts > 0, (t, s) ∈ QF l
(i). Hence, [x̄1(k), ..., x̄S(k)] is a feasible solution to (43) and
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∑

s fs(x̄s(k)) ≤ P ∗({Ḡl}). The second part of the inequality (50) follows directly from

the weak duality theorem, i.e.,

Z(λk) ≥ min
λ

Z(λ) ≥ P ∗({Ḡl}). (55)

If a proper step-size is chosen, e.g., constant or diminish step size, the subgradient

method converges to the optimal solution [16], and therefore limk→∞
∑

s fs(x̄s(k)) =

P ∗(Ḡl). This combining with the strong duality theorem (i.e., P ∗(Ḡl) = minλ Z(λ))

implies that limk→∞ 1 −
∑

s fs(x̄s(k))
Z(λk)

= 0.

Comment 3 The primary goal of computing ηi(k) is to estimate the gap between the

current solution and the optimal one. In order to reduce the amount of message-passing,

we can calculate ηi(k) less frequently, e.g., every 20 iterations. Also, ∆̄s(k) approaches

1 when the sub-optimality gap converges to zero. Hence each user s could use it as

a metric to measure the near-optimality of the current feasible solution, which can be

implemented in a distributed manner.

During each iteration in Algorithm 2, we can calculate a lower bound to the optimal

objective function value of the original problem (34) as stated in Theorem 5. The proof

is similar to that of Theorem 4 and is thus omitted.

Theorem 5 At the kth step of Algorithm 2, let ∆s(k) , minl,rls>0
cl

ĉl(k)
, where

ĉl(k) = max
QFl

∈Gl





∑

s

rlsxs(k) +
∑

(t,s)∈QFl

btsxs(k)



 . (56)

The optimal objective function value of (34) is upper bounded by Z(λk) and lowered

bounded by
∑

s fs(x̃s(k)), where x̃s(k) = xs(k)∆s(k) for each user s.

Furthermore, the sub-optimality gap of the solution [x̃1(k), ..., x̃S(k)] can be defined

as ηo(k) = 1−
∑

s fs(x̃s(k))

Z(λk)
. Based on Algorithm 2, we propose the optimal distributed

algorithm 3 to find the optimal solution of Problem (34). The basic idea of Algorithm

3 is to dynamically generate a set of active constraints to approximate the D-norm

protection function. This method proceeds in a iterative manner.At each iteration, we

use a subset of it to approximate the whole constraint set Gl = {QF l
}, and Algorithm

2 is invoked to solve the relaxed problem.

Algorithm 3 (Distributed primal-dual cutting-plane algorithm for robust multipath

rate control)

1. For each link l, let Ḡl = {}.

2. Set the time ko = 0, and the sub-optimality gap for the outer loop iteration ǫo ≪ 1.

3. Let ko = ko + 1.

4. Set the threshold of sub-optimality gap for the inner loop iteration ǫi(ko) ≪ 1.

5. Run Algorithm 2 until ηi(ki) ≤ ǫi(ko) or the number of iterations ki exceeds a pre-

specified threshold. If the sub-optimality gap ηo(ki) ≤ ǫo or ko exceeds a pre-specified

threshold, stop. Otherwise, go to the step 6.

6. Each user s passes the tentative data rate x∗
s to every link associated with this user.

7. For each path t, rank {btsx
∗
s}s∈Et

in descending order and take the Γt largest items

to construct a new set Ft,Γt
.
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8. For each link l, construct set QF l
= {(t, s) : t ∈ T (l), s ∈ Ft,Γt

} and add it into

Ḡl. Go to step 3.

Algorithm 3 iteratively generates a group of relaxed problems to approximate the

original problem (34), and eventually converges to the optimal solution if both ǫi and

ǫo are set as 0. Furthermore, the tradeoff between the performance and complexity can

be controlled via setting ǫi and ǫo at different values. An intuitive way to accelerate

the convergence speed of Algorithm 3 is to set ǫi as a relatively large value when ko

is small and then gradually decreases with ko. As such, the algorithm can quickly find

out useful cutting planes at the first several iterations and then gradually converge

to the optimal solution. Notice that the amount of message passing at each step of

Algorithm 2 increases with |Ḡl|. On the other hand, due to the special structure of the

protection function (35), a lot of constraints in Ḡl should be inactive. This motivates

us to consider the following distributed active-set method. We first show that inactive

constraints are redundant in the theorem below.

Theorem 6 Assuming the optimal solution to the relaxation problem (43) is x∗ ,

[x∗
1, x∗

2, ...x∗
S ]T . For the set Gl of each link l, if we remove the subset

{

QF l

}

corre-

sponding to the inactive constraints at the optimal solution x∗, i.e.,







QF l
: QF l

∈ Ḡl,
∑

s∈S(l)

rlsx
∗
s +

∑

(t,s)∈QFl

btsx
∗
s < cl







, ∀l, (57)

from problem (43), the resulting problem has the same optimal solution as (43).

Proof Assume that at least one constraint in Problem (43) is not active at its optimal

solution x∗. Without loss of generality, assume that such inactive constraint corre-

sponds to set QF l̄
(j) ∈ Ḡl̄. Then we can remove the corresponding constraint and

looks at the following problem:

maximize
∑

s

fs(xs) (58)

subject to
∑

s∈S(l)

rlsxs +
∑

(t,s)∈QFl
(i)

btsxs ≤ cl, 1 ≤ i ≤ |Ḡl|, l 6= l̄ ,

∑

s∈S(l̄)

rl̄sxs +
∑

(t,s)∈QF
l̄
(i)

btsxs ≤ cl̄, 1 ≤ i ≤ |Ḡl̄|, i 6= j,

variables x � 0 .

It remains to show that x∗ is the optimal solution of (58). Notice that the objective

function of (43) is continuously differentiable and concave, and the constraints in (43)

are continuously differentiable and convex functions, the following KKT conditions are
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sufficient and necessary for optimality,

f ′
s(x

∗
s) −

∑

l

|Ḡl|
∑

i=1

λ∗
li



rls +
∑

(t,s)∈QFl
(i)

bts



 = 0, (59)

∑

s

rlsx
∗
s +

∑

(t,s)∈QFl
(i)

btsx
∗
s ≤ cl, (60)

λ∗
li(cli − rlsx

∗
s −

∑

(t,s)∈QFl
(i)

btsx
∗
s) = 0, 1 ≤ i ≤ |Ḡl|, ∀l, (61)

λ∗
li ≥ 0, 1 ≤ i ≤ |Ḡl|, ∀l, (62)

where f ′
s(x) denotes the first order derivative of the function fs(x). Since

∑

s

rl̄sx
∗
s +

∑

(t,s)∈QF
l̄
(j)

btsx
∗
s < cl, (63)

it follows from (61) that λ∗
l̄j

= 0. This implies that for the solution x∗, we can find

a group of dual variables {λ∗
li ≥ 0, li 6= l̄j} to satisfy the KKT condition of (58).

Consequently, x∗ is the optimal solution to (58).

Using induction, we can show that the optimal solution remains the same if we

remove all inactive constraints.

Theorem 6 motivates us to design a new algorithm that reduces the amount of

message passing in the distributed algorithm, as shown below.

Algorithm 4 (Distributed primal-dual active-set algorithm for robust multipath rate

control)

1. Each link l sets Ḡl as an empty set.

2. Set the number of outer loop iteration ko = 0, and the threshold of sub-optimality

gap for the outer loop iteration ǫo ≪ 1.

3. Let ko = ko + 1.

4. Set the sub-optimality gap for the inner loop iteration ǫi(ko) ≪ 1.

5. Algorithm 2 is carried out until ηi(ki) ≤ ǫi(ko) or the number of iterations ki

exceeds a pre-specified threshold. If the sub-optimality gap ηo(ki) ≤ ǫo or ko exceeds

a pre-specified threshold, stop. Otherwise, go to the step 6.

6. Each user s passes the tentative data rate x∗
s to every link associated with this user.

7. Rank {btsx
∗
s}s∈Et

in descending order for each path t, and take the Γt largest items

to construct a new set Ft,Γt
.

8. For each link l, construct set QF l
= {(t, s) : t ∈ T (l), s ∈ Ft,Γt

}. Remove the

redundant constraint set from Ḡl according to (57), and add QF l
into Ḡl. Go to

step 3.

We next prove that the above algorithm converges to the optimal solution of Prob-

lem (34).

Theorem 7 Assume the objective function
∑

s fs(xs) is strictly concave. The dis-

tributed active-set algorithm 4 converges globally and monotonically to the optimal so-

lution of the robust multipath rate control problem in (34) in finite steps.
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Proof Let x∗(q) , [x∗
1(q), x∗

2(q), x∗
3(q), ..., x∗

S(q)]T be the solution obtained at the qth

step of the active-set method. We first prove that if the active-set method does not

converge to the optimal solution to (34) at the qth step, we have
∑

s fs(x
∗(q)) >

∑

s fs(x
∗(q + 1)). It follows from Theorem 6 that x∗(q) is the optimal solution to the

relaxed problem in (43) with only active constraints. Since the objective function is

strictly concave, if x∗(q) is not an optimal solution to (34), it must violate one of the

constraints in (37). Consequently we can add a cutting plane into the constraint set

and remove x∗(q) from the feasible set of the relaxed problem at the (q + 1)th step

of the active-set method. This combing with the fact that the objective function is

strictly concave implies
∑

s fs(x
∗(q)) >

∑

s fs(x
∗(q + 1)), i.e., the objective function

value of the active-set method is monotonically decreasing before its convergence.

Let C(q) be the set of active constraints at the qth step of the distributed primal-

dual active-set method. Assume the distributed active-set method does not converge

before the qth step, we have
∑

s fs(x
∗(1)) >

∑

s fs(x
∗(2)) > · · · >

∑

s fs(x
∗(q)). Since

the objective function is strictly concave,we have C(q̄) 6= C(q), ∀q̄ < q, which implies

that

C(1) 6= C(2) 6= · · · 6= C(q). (64)

In view of the fact that the number of different C(q) is finite [cf. (37)], we conclude

that the proposed algorithm is guaranteed to converge when q goes to infinity.

3.3 Numerical Results

Here we consider a simple network model with three nodes, 13 links and 13 paths,

as shown in Fig. 1. Paths 1−12 are single link paths that use links 1−12, respectively.

Path 13 consists of links 12 and 13. The first 11 paths are used as primary paths by 11

users in the network. Path 12 is used as the backup path by users 1− 8, and path 13 is

used as the backup path by users 9− 11. Each user s has a logarithmic utility function

log (xs), where the unit of xs is bps. The capacity of each link is fixed at 1 Mbps.

Figure 2 shows the convergence behavior of the Algorithm 4. Here Γ12 = Γ13 = 3,

which means we allow maximum 3 and 3 users to experience failures and use path 12

and path 13 as their backup paths to transmit their data respectively. Two variations

of active-set algorithms are considered in Figure 2. We call the first type of active-set

method fixed active-set method, as we assume fixed number of inner iterations, namely,

the iterations of the subgradient method, at each stage. The algorithm stops when

ηo ≤ ǫo. The number of inner iterations is set as 100, 50, 15, respectively, corresponding

to the first three subplots in Figure 2. In the second version of active-set method, i.e.,

the adaptive active-set method, the estimated sub-optimality gap, i.e., ηi is are used

as the stopping criteria. The inner iteration stops when ηi ≤ ǫi and the active-set

algorithm stops when ηo ≤ ǫo. Also, ǫi is set as 0.5 × 0.1ko−1 where ko is the number

of outer iterations. ǫo is set as 0.0001 in this simulation study. It is seen that in general

the distributed active-set method can converge to a close-to-optimal solution within a

few iterations. The active-set method (Algorithm 4) with fixed number of iterations

converge to the optimal solution if the maximum number of the inner iterations is

chosen to be large enough (e.g., 100 and 50 in this study), but the corresponding

convergence time might be long (e.g., around 400 and 200, respectively). Reducing

the maximum number of inner iterations to 15 speeds up the convergence but fails to
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Link 9  (User 9,   primary path) 

Link 11 (User 11, primary path) 

.. 

. 

Link 12 (User 1            User 11)  Link 13 (User 9            User 11)  

Backup path Backup path 

Link 1 (User 1, primary path)  

Link 2 (User 2, primary path)  

.. 

. 

Link 8 (User 8, primary path)  

Fig. 1 Network Topology.

converge to the exact optimal solution.. In contrast, the adaptive active-set method

quickly converge to the optimal solution, as shown in the last subplot.

Figure 3 compares the convergence speed of the distributed active-set method, i.e.,

Algorithm 4 and the cutting-plane method, i.e., Algorithm 3. To speed up the con-

vergence, the number of inner iterations of both algorithms are chosen based on the

estimated sub-optimality gap. In general, the cutting-plane method converges a bit

faster than the active-set method, as shown in Figure 3. However, it requires more

message-passing at each iteration as inactive constraints are not removed. Also, the

number of inactive constraints typically increase with the problem size and the num-

ber of iterations, which makes the cutting-plane method impractical for large-scale

networks.

As shown in Figure 4, Algorithm 4 achieves a close-to-optimal solution within only

a few iteration. Notice that Dth = 1 − ηo denotes a threshold for estimated sub-

optimality gap of Algorithm 4. It is seen that the proposed algorithm can achieve a

solution that is 99% of the optimal one within 25 iterations. The tradeoff between the

sub-optimality gap and distributiveness, i.e., the number of iterations in Algorithm 4

is shown in Figure 5.

3.4 Performance-Robustness Tradeoff

Besides the worst case robustness, we can also study the performance-robustness

tradeoff by using outage probability as the definition of robustness. Let x∗ denote
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Fig. 2 Convergence behavior of the fixed and adaptive active-set method
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Fig. 3 Convergence behavior comparison between the active-set method and the cutting-plane
method
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Fig. 4 Convergence behavior of algorithm 4 for different sub-optimality gaps
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the optimal solution to (34). y∗ is the corresponding aggregated path rates, namely,

y∗ = W x∗. An outage of path t is defined as the occurrence of link failures which makes

the constraint on path t is violated, i.e.,
∑

s∈Pt
wtsx

∗
s +

∑

s∈Et
b̄tsx

∗
s > y∗t . Notice

here b̄ts denotes the actual percentage of rate that user s allocates to path t. Here

we assume b̄ts is a Bernoulli random number which takes value bts with probability
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Pts and 0 with probability 1 − Pts, i.e., b̄ts equals to bts if the primary path fails,

otherwise b̄ts = 0. The outage can be measured by a probability function Po(t) such

that Po(t) = Pr(
∑

s∈Pt
wtsx

∗
s +

∑

s∈Et
b̄tsx

∗
s > y∗t ). In addition, we use Pt to denote

the upper bound to the probability of failure of the primary paths in Et, i.e., Pts ≤ Pt

for all s ∈ Et. We further assume failures of primary paths are independent of each

other.

Clearly, the proposed rate control scheme becomes increasingly robust against link

failures if we enforce stronger protections, i.e., larger values of Γt’s. On the other hand,

a larger Γt leads to a more conservative estimation of backup bandwidth, and con-

sequently reduces the maximum achievable rate. Various uncertainty sets give rise to

different tradeoffs between the achievable rate and outage probability. If less than Γt

primary paths fail to work, the obtained rate control scheme remains feasible deter-

ministically. Furthermore, the rate control scheme will be feasible with high probability

if a proper Γt is selected, as shown in Theorem 8.

Theorem 8 Let x∗ denote the optimal solution to (34) and y∗ = W x∗. Recall Et de-

note the set of users who utilize path t as the backup path, and Po(t) is the outage prob-

ability that the rate control on path t is violated, i.e., Pr(
∑

s∈Pt
wtsx

∗
s +
∑

s∈Et
b̄tsx

∗
s >

y∗t ). Then,

1. Po(t) = 0 if |t̄| ≤ Γt, where |t̄| is the number of users in Et whose primary paths

fail.

2. Po(t) ≤
∑|Et|

k=Γt+1

(|Et|
k

)

(Pt)
k (1 − Pt)

|Et|−k.

3. Po(t) ≤ −2
(Γt+1−|Et|Pt)

2

|Et| if Γt+1
|Et| ≥ Pt. In addition, let ft , Γt

Et
. If ft > Pt, we

have Po(t) ≤ e−Dv(ft||pt)|Et|, where Dv (ft||pt) | = ft log
(

ft

Pt

)

+(1−ft) log
(

1−ft

1−Pt

)

is the Kullback-Leibler (KL) divergence for two Bernoulli random variables.

Proof Since |t̄| ≤ Γt, we have

∑

s

wtsx
∗
s +

∑

s∈Ft,|t̄|, |Ft,|t̄||=t̄, Ft,|t̄|⊆Et

b̄tsx
∗
s (65)

≤
∑

s

wtsx
∗
s + max

Ft,Γt





∑

s∈Ft,Γt
, Ft,Γt

⊆Et, |Ft,Γt
|=Γt

b̄tsx
∗
s



 (66)

≤ y∗t (67)

It follows that Po(t) = 0.

Because the failures of primary paths are independent of each other, the total

number of failed paths follows Binomial distribution. In addition, the failure probability

of each single primary path is upper bounded by Pt. It follows that

Po(t) ≤

|Et|
∑

k=Γt+1

(

|Et|

k

)

(Pt)
k (1 − Pt)

|Et|−k. (68)
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This bound can be difficult to compute when |Et| is large. We can further upper-

bound the outage probability as follows.

Po(t) ≤

|Et|
∑

k=Γt+1

(

|Et|

k

)

(Pt)
k (1 − Pt)

|Et|−k, (69)

=

|Et|−Γt−1
∑

k′=0

(

|Et|

|Et| − k′

)

(Pt)
|Et|−k′

(1 − Pt)
k′

, (70)

=

|Et|−Γt−1
∑

k′=0

(

|Et|

k′

)

(Pt)
|Et|−k′

(1 − Pt)
k′

, (71)

≤ e
−2

[|Et|(1−Pt)−(Et−Γt−1)]2

|Et| , (72)

= e
−2

(Γt+1−|Et|Pt)
2

|Et| , (73)

provided that Γt+1
|Et| ≥ Pt. (70) is obtained by letting k′ , |Et| − k. (71) is due to the

fact that
( |Et|
|Et|−k′

)

equals to
(|Et|

k′

)

. (72) follows from the Hoeffding inequality.

Let ft , Γt

Et
. Assume ft > Pt, it follows from the Chernoff-Hoeffding theorem [23]

that,

Po(t) ≤

|Et|
∑

k=Γt+1

(

|Et|

k

)

(Pt)
k (1 − Pt)

|Et|−k, (74)

≤

(

Pt

ft

)ft
(

1 − Pt

1 − ft

)1−ft

, (75)

≤ e−Dv(ft||pt)|Et|. (76)

Here Dv (ft||pt) | = ft log
(

ft

Pt

)

+ (1 − ft) log
(

1−ft

1−Pt

)

denotes the Kullback-Leibler

(KL) divergence for two Bernoulli random variables.

Figure 6 shows the tradeoff between robustness and performance. The performance

is measured by the total network utility
∑

s log (xs), and the robustness level is mea-

sured by the number of failures that is guaranteed to be protected on path 12, i.e., Γ12.

The value of Γ13 is fixed at 3 in this example. As we see, the performance decreases

as the robustness (Γ12) increases. Also the centralized algorithm and distributed Al-

gorithm 4 achieve the same performance.

The outage probability of path 12 and its upper bounds are illustrated in Figure

7. Here Pt is set as 0.1, i.e., the probability of failures of users in E12 is upper bounded

by 0.1. As evident from the figure, the outage probability decreases exponentially with

the increase of Γ12. The Chernoff and Hoeffding bounds can be used as efficient means

to estimate the outage probability in case the exact outage probability is difficult to

calculate.

Figure 8 illustrates the probabilistic tradeoff between robustness and total network

utility. It is seen that by using the D-norm uncertainty set, the outage probability of

a path can be reduced in an exponential rate by slightly decreasing the total network

utility. In practice, we can select a proper Γ12 to strike a balance between the robustness

(outage probability) and the total system throughput.
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Fig. 6 Deterministic robustness-rate tradeoff under D-norm uncertainty set
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Fig. 7 Outage probability and upper bounds for different Γ12
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Fig. 8 Probabilistic robustness-rate tradeoff under D-norm uncertainty set
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3.5 Robustness-Distributiveness Tradeoff

We next consider the tradeoff between the robustness and distributiveness of the

proposed rate control algorithm. Here the robustness of the path t is quantified by the

parameter Γt, which can control the outage probability Po(t). We use the total number

of message passing required at one iteration in Algorithm 2 (Step 5 of Algorithm 4) to

measure the distributiveness. At each iteration of Algorithm 2, every link will collect

tentative decision rate x∗ from sources (Step 4) and perform the subgradient projection

as in (49). The amount of message passing required at Step 4 is independent of the

parameter Γt, and the amount of message passing for Step 7 increases only linearly

with |Ḡl|. So the total number of message passing during one iteration for one user is

O(|Ḡl|).

Figure 9 shows the robustness-distributiveness tradeoff of the distributed robust

rate control algorithm with different thresholds, i.e., Dth = 1 − ηo, for estimated sub-

optimality gap in Algorithm 4. The upper bound to the amount of message passing is

derived from the fact that |Ḡl| is upper bounded by
∏

dlt=1

(|Et|
Γt

)

. We also calculate the

actual number of message passing at the final iteration of Algorithm 4 through simula-

tion studies. This figure quantifies the intuition that the distributiveness of Algorithm

4 could be improved at the expense of optimality, i.e., less message-passing is required

if we allow for a relatively bigger sub-optimality gap.
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Fig. 9 Robustness-distributiveness tradeoff of the distributed active-set algorithm

3.6 Rate-Distributiveness Tradeoff with Guaranteed Outage Bound

We conclude this section with a stronger and somewhat surprising result than

generally obtainable in DRO: due to the special property of the D-norm protection

function in rate control, for a given path t, we can tradeoff between the total network

utility and distributiveness without loss of robustness. This tradeoff is achieved by

choosing different linear constraints to approximate the D-norm uncertainty set.

Recall the D-norm protection function is gt(bt, x) = maxFt,Γt
⊆Et

∑

s∈Ft,Γt
btsxs, ∀t.

Further, it has been seen in the preceding section that the number of required message



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

28

passing at each step is proportional to
(|Et|

Γt

)

, which equals to the number of linear

constraints required to fully characterize gt(bt, x). The motivation here is to find a

new protection function with a larger object function value than that of gt(bt, x) and

can be represented by fewer linear constraints.

Consider, for example, that we want to protect the rate control scheme against

single-path failure for the path t, i.e., Γt = 1. We assume Et = {et(1), et(2), et(3), et(4), et(5), et(6)} ,

where et(i) denotes a single-path failure of the primary path of user i. The protection

function is chosen to be

gt(bt, x) = max
Ft,1⊆Et

∑

s∈Ft,1, |Ft,1|=1

btsxs. (77)

Since |Et| = 6, this protection function can be equivalently represented by six linear

constraints. Let Ēt = {[et(1), et(2)], [et(3), et(4)], [et(5), et(6)]}. We can use the follow-

ing protection function

ḡt(bt, x) = max
F̄t∈Ēt

∑

s∈F̄t

btsxs, ∀t. (78)

For any Ft,1, we are able to find a corresponding set F̄t ∈ Ēt such that Ft,1 ⊆ F̄t.

Further, Ēt contains only three sets i.e., |Ēt| = 3. We can therefore reduce the number of

required message passings at each iteration of Algorithm 4 by replacing the protection

function gt(bt, x) with ḡt(bt, x).

We can further obtain the following general result. Recall the D-norm protection

function is given by

gt(bt, x) = max
Ft,Γt

, |Ft,Γt
=Γt|, Ft,Γt

⊆Et

∑

s∈Ft,Γt

btsxs, ∀t, (79)

where Et = {s : bts > 0, ∀s} is the set of users who utilize path t as the backup

path. Ft,Γt
denotes a subset of Et with size Γt. Let ḡt(bt, x) denote another protection

function such that

ḡt(bt, x) = max
F̄t∈Ēt

∑

s∈F̄t

btsxs, ∀t. (80)

Lemma 1 Assume there exists a set Ēt such that for any Ft,Γt
, we can always find

F̄t ∈ Ēt which satisfies Ft,Γt
⊆ F̄t. The outage probability of path t by using the

protection function ḡt(bt, x) is no larger than that by using the D-norm protection

function.

Proof Let x∗ denote the optimal solution to (34). y∗ is the corresponding aggregated

path rates, namely, y∗ = W x∗.
Assume {x̄} is the optimal solution to the robust rate control problem (34) where

the protection function is set as ḡt(bt, x). ȳ represents the aggregated path rates,i.e.,

y∗ = W x∗. For any Ft,Γt
, there exist F̄t such that Ft,Γt

⊆ F̄t, it follows that

gt(bt, x̄) = max
Ft,Γt

⊆Et

∑

s∈Ft,Γt

btsx̄s ≤ max
F̄t⊆Ēt

∑

s∈F̄t

btsx̄s = ḡt(bt, x̄).

Consequently, we have
∑

s wtsx̄s + ḡt(bt, x̄) ≤
∑

s wtsx̄s +gt(bt, x̄) ≤ ȳt, which means

{x̄, ȳ} is a feasible solution to the robust power control problem with D-norm protection

function. This directly proves the claim.



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

29

The tradeoff between the total network utility and the robustness is shown in

Figure 10. Here single-path protection is assumed, i.e., Γ12 = 1. To make sure the

rate control scheme is robust against single-path failure, we can choose the D-norm

protection function with Γt = 1. However, such a protection function brings about

eight additional linear constraints and requires considerable message passing. To re-

duce the number of message passing, we can use an alternative protection function.

Here we consider three other protection functions satisfying conditions given in The-

orem 1. Since |E12| = 8. The first protection function is to let |F̄12| = 2 and Ēt =

{[et(1), et(2)], [et(3), et(4)], [et(5), et(6)], [et(5), et(6)]}. Such a protection function can

be represented by four linear constraints. We can obtain the other two protection func-

tions in a similar manner.
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Fig. 10 Rate-distributiveness tradeoff with guaranteed outage bound

4 Conclusions

Making communication network optimization models robust and distributed at the

same time is an under-explored area. This paper initiates the study of DRO through

several robust formulations that preserve a large degree of distributiveness of solution

algorithms. We first describe several models for describing parameter uncertainty sets

that can lead to distributed solutions for linearly constrained nominal problems. These

models include general polyhedron, D-norm, and ellipsoid. We then apply these models

in the example of distributed rate control. The tradeoff between robustness (i.e., the

maximum of link failures allowed), performance (total network utility), and distribu-

tiveness (i.e., the amount of message passing needed) is demonstrated. In Part II of this

two-part paper, extensive applications of DRO methodology to wireless power control

will be further presented.

The study of distributed robust optimization in general remains open, with many

challenging issues and possible applications where robustness to uncertainty is as im-

portant as optimality in the nominal model. In particular, possible extensions include

nonlinear constraint sets in the nominal problem or uncertainties in other parts of the

nominal formulations.
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